

The Pattern
Organization

Designed for change

M a x S t e w a r t

M a x S t e w a r t

T h e
 P a t t e r n

 O r g a n i z a t i o n

D e s i g n e d f o r c h a n g e

Published by Decomplexity Associates Ltd
First published 2004

Copyright © 2004 by Max Stewart

The right of Max Stewart to be identified as the author of this work has been asserted
by him in accordance with the UK Copyright, Designs and Patents Act 1988

Set in Times New Roman

US Acrobat edition - ISBN 0-9540062-8-3

also available in European Acrobat edition - ISBN 0-9540062-7-5
and
European printed edition – bound with colour illustrations – ISBN 0-9540062-6-7

Acrobat editions may be reproduced, stored for later retrieval or transmitted if the
original Adobe® Acrobat® format is retained and authorship acknowledged.
Conversion to editable form or editing in any way is a breach of copyright. Printed
editions may not – in whole or in part – be copied, stored in a retrieval system or
transmitted without prior written permission of the publisher.

This book complements the author’s The Coevolving Organization – poised between
order and chaos which is available through booksellers:
ISBN 0-9540062-0-8 (European edition – bound with full-colour plates)

or copyable free from www.decomplexity.com with different line illustrations and
without colour plates:
ISBN 0-9540062-1-6 (European Acrobat edition)
ISBN 0-9540062-2-4 (US Acrobat edition)

and

The Robust Organization – highly optimized tolerance which is available through
booksellers:
ISBN 0-9540062-3-2 (European edition – bound with colour illustrations)

or copyable free from www.decomplexity.com with black-and-white line
illustrations:
ISBN 0-9540062-4-0 (European Acrobat edition)
ISBN 0-9540062-5-9 (US Acrobat edition)

http://www.decomplexity.com/

AUTHOR

Max Stewart was educated at the Universities of Wales and Cambridge. He wrote the
first and widely praised non-specialist account of the application of relational
database principles to systems design – something that later became better known as
Data Analysis. He was at one time IT Director for the Scottish operations of Leyland
Vehicles and later spent many years with Mars, Incorporated. He is a Principal with
Decomplexity Associates and lives in Rutland, England’s smallest county.

COPYRIGHT AND TRADEMARKS

Copyright © Max Stewart 2004

Decomplexity is a trading name, and Decomplexity™, decomplex™ and derivative
names (of processes to improve business effectiveness) are trademarks of
Decomplexity Associates Ltd. Adobe® and Acrobat® are registered trademarks of
Adobe Systems Inc. Other trademarks and trading names are acknowledged.

Decomplexity Associates Ltd is a company incorporated in England and Wales.

The smith also sitting by the anvil, and considering the iron
work, the vapour of the fire wasteth his flesh, and he fighteth
with the heat of the furnace: the noise of the hammer and the
anvil is ever in his ears, and his eyes look still upon the pattern
of the thing that he maketh; he setteth his mind to finish his
work, and watcheth to polish it perfectly.

 Wisdom of Jesus Son of Sirach 38 v28
 King James version (Apocrypha)

CONTENTS

Preface

Acknowledgements

Chapter 1 – Introduction

Chapter 2 – Patterns

Chapter 3 – Decomposition patterns

Chapter 4 – Organization and business processes

Chapter 5 – Buffering

Chapter 6 – Buffer placement

Chapter 7 – From IT to organization

Chapter 8 – Reference material

Chapter 9 – Questions and answers

Bibliography

Index

Figures
Figure 1 - scope of simulation..19
Figure 2 - class and object diagrams ..32
Figure 3 - Adaptor pattern diagram ..33
Figure 4 - Adaptor pattern OMT ...34
Figure 5 - Facade pattern diagram ...35
Figure 6 - Facade pattern OMT...36
Figure 7 - Mediator pattern diagram ...37
Figure 8 - Mediator pattern OMT ..38
Figure 9 - Chain of responsibility diagram ...39
Figure 10 - Chain of responsibility OMT...41
Figure 11 - Bridge pattern 'before' diagram ...43
Figure 12 - Bridge pattern 'after' diagram ...43
Figure 13 - Bridge pattern OMT..44
Figure 14 - HOT with a. equal and b. centred probability of sparks ...48
Figure 15 - Trees and semi-lattices ..63
Figure 16 - Military commands form a language...64

The Pattern Organization i

PREFACE

T his book is the third of a series by the present author on business organization.
The first of the three – The Coevolving Organization – was published in 2001.
It tried to answer one fundamental business question – how decentralized

should an organization be? – using developments in physics and theoretical biology
which emerged during 1988-1995. It described how businesses could be positioned,
poised and reactive, on the boundary between stability and anarchy, using the
concepts of ‘edge of chaos’ (EOC) and ‘self-organized criticality’ (SOC), and tried to
show what benefits might accrue from attaining this nirvana. The question of whether
the edge of chaos was the optimal point under all conditions to which to decentralize
was left unresolved. If, in particular, instead of relying on a random self-organization
process to manage decentralization, we actively designed the organization, could the
optimal point be shifted even more in the direction of decentralization without
compromising the stability of the organization? In the late 1990s, the complete
answer was simply not known.

 But between 1998 and 2003, something new and related was discovered and
then explored: highly optimized tolerance (HOT). HOT does not supersede EOC and
SOC. Instead, it allows us to exploit the idea of decoupling parts of an organization
(divisions, departments, even individuals) such that the decoupled parts can be even
more responsive than with EOC/SOC. More significantly, HOT also highlights the
role of deliberate design – the antithesis of self-organization. Self-organization or,
alternatively, restructuring using a simple and limited amount of management
intervention, can be attempted following the EOC/SOC principles outlined in The
Coevolving Organization. But if a business is decoupled further using HOT
principles, it is possible for the decoupled parts to be even more responsive than
would be possible with the EOC/SOC ideas alone. It implies minimizing how the
decoupled parts can affect one another and having a good understanding of the likely
business risks to which each part is subject.
 The first two books thus described how to position an organization at an
optimal level of decentralization and what could be gained from doing so. But to
those needing to implement the restructuring of a business, this may have sounded
like airy-fairy nonsense. How could any fanciful theory take into account real
business processes, for example?
 This next book fills the gap. The processes of a business and its organization
staff structure are, or should be, very closely related. Some businesses even rightly
pride themselves on having transformed their organization structure into one which is
closely in line with their business process structure. Their organization charts and
business process charts look very similar. But business processes themselves will
change. Some will evolve smoothly in a planned way as supply, manufacture and
distribution evolve. Others will be forced to change rapidly in response to
competitors' threats. Amending business processes in a hurry can be perilous,
particularly if the business is accustomed to gradual change. If we want to build an
organization which is decentralized to some optimal point arrived at via edge of
chaos and highly optimized tolerance considerations,

ii Preface

 how do we put together the new organization from the bottom up so that
the organization and business processes are aligned?

 how do we ensure that, when business processes themselves change, the
organization and IT systems are not left flailing around and unable to keep
up? The aim of applying EOC and HOT concepts to organizations was to
engender responsiveness without instability. How, therefore, can we ensure
that when business processes are changed, the various parts of an
organization continue to work and communicate with each other
effectively?

These questions inevitably raise a further one: when building from ‘bottom up’, how
far down is ‘bottom’? In other words, to what level of granularity do we descend in
order to have the foundation on which to build upwards: individuals, teams, small
departments, business processes or what? The organizational foundation on which
the material which follows is constructed is roughly the size of a small team. One
characteristic of such a team is that it is responsible for running a single discrete
business process; further decomposition of this process and its supporting
organization into smaller semi-independent pieces would be pointless since each such
smaller sub-team would not be able to make decisions without reference to the others.
 The final book in this series, The Emergent Organization, will cover true
bottom-up construction – the evolution of an organization from rudimentary business
process fragments. It will describe how to grow an organization from seed using a
selection of elementary business-process building blocks. The growth of each process
must take account of its future neighbours; it must not merely evolve to meet its own
selfish ends. The processes and their supporting teams also need to ‘grow towards the
light’: some long-term business policy or statement of ethics like the Five Principles
of Mars plus some intermediate goals such as Balanced Scorecard objectives. In other
words, we want to create a living business organization from scratch, or following the
dismemberment of its failing predecessor, using long-term policies as attractors
(desirable patterns). This emergent organization must then continue to evolve of its
own accord. Since business policy can specify the degree to which decision making
should be decentralized and the degree to which different parts of the organization
compete with each other or otherwise, these attractors can mould a coevolving
organization.
 As with the previous two books, the background material is not readily
accessible to most managers. But unlike the previous two, the present book draws on
ideas from architecture and from object-oriented IT system design rather than from
theoretical physics and evolutionary biology. The first detailed exposition of the
usefulness and ubiquity of patterns was made by practising architect and
mathematician Chris Alexander in the 1960s. His ideas were later picked up by IT
program designers who were seeking ways to design reusable chunks of
programming so that subsequent changes did not necessitate wholesale redesign or
inelegant fudges.

Max Stewart
Rutland, UK - October 2004

Acknowledgements iii

ACKNOWLEDGEMENTS

T

he present book would not exist without the pioneering work of architect
Christopher Alexander and of the ‘object-orientated Gang of Four’ – Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides – who recognised

the value of Alexander’s ideas to revolutionise IT systems design. Their ideas have
been used, built upon and are freely acknowledged in the text. Apart from brief
extracts for comment, no copyright material has been reproduced but the names and
diagrams of the various buffer patterns have been made consistent with those of the
Gang of Four’s definitive work “Design Patterns - Elements of Reusable Object-
Oriented Software” (Addison-Wesley 1994) in order to help IT practitioners already
familiar with this latter book.
 The prefatory extract from the Authorized Version of the Bible (The King
James Bible), the rights in which are vested in the Crown, is reproduced by
permission of the Crown’s Patentee, Cambridge University Press.

The Pattern Organization 1

CHAPTER 1

INTRODUCTION

T

he thread underlying all four books in this series is flexibility. The first two
demonstrated how to split an organization into discrete parts – which could in
principle even be down to the level of individual people – such that decisions

could be made and implemented fast. This third book tackles the problem of putting
an organization together such that organization structure can change quickly and
without loss of effectiveness. In other words, until now we have been trying to
identify exactly where and how an organization can be split such that the resulting
pieces (‘objects’) are as autonomous as possible consistent with the overall stability
of the business. Three issues were left outstanding:

 how can organizational objects be insulated from each other such that internal
changes in one have minimal effect on any of the others

 hitherto, the connections between objects have been considered at a superficial
level as links (C-couplings) with varying strengths. But what happens when
several links conspire to work together?

 how can we catalyze an organization to evolve by growing small fragments of
business processes in such a way that the growth upwards and sideways is
guided by business policy

What follows addresses the first two issues, the first in particular. Its aim is to
improve our ability to change an organization easily and quickly in response to
external stimuli or internal decisions. Hitherto, we have used a ‘language’ based on
Stu Kauffman’s NKCS landscape modelling ideas in order to describe the dynamic
behaviour of coevolving organizational objects. We also need a language – a different
one – in order to describe the building of organizational objects which ideally can
behave as autonomously as possible. This will be a different language: a combination
of architect Chris Alexander’s Pattern Language to provide the definition of a
business object (or collection of linked objects) plus the object-orientated design
concepts of classes to describe the internal structure and behaviour of each pattern.
 In 1964, Alexander first described how abstract ‘things’ interact, and how
misfits between these ‘things’ and their environment can be minimized. Alexander's
work spawned considerable interest from other areas, notably object-orientated
software design. He introduced the idea of ‘patterns’ which can be used at a local
(decentralized) level to create structures, which in our case contain the internal
processes (not necessarily the formal business processes) of organization units each
of which has the most appropriate fit for its purpose.
 With the discovery of highly optimized tolerance (HOT) in 1998 onwards
(see The Robust Organization), it became clear that the placing of barriers between
business areas, or more precisely designing where to buffer one business process
from another, could be undertaken in a much more precise way. Alexander’s aim was

Introduction 2

to minimize the knock-on effect of a change. HOT showed how to use information on
the likelihood (i.e. probability) of a possible change in order to place buffers around
those areas where this was most likely to happen. The best analogy is the placement
of firebreaks in a forest, where areas near campsites for example are closely ringed
with firebreaks because of the greater probability of sparks occurring.
 IT system designers have a similar challenge: to design systems such that
subsequent changes do not introduce unwanted side-effects. One way to do this is to
attempt to identify those parts of systems which are most likely to change. These are
usually the programming nuts and bolts used in its construction rather than the higher
level design (the architecture) which is typically more stable. Such areas vulnerable
to change are buffered – hidden within black boxes (‘encapsulated’) – as far as
possible.
 The aim of this book is to pull together apparently unrelated concepts from
architecture and object-orientated IT systems design such as:

 decentralization and decomposition
 buffering
 encapsulation
 barriers

in order to show where business processes (and their attendant staff) should be
buffered (cushioned) from one another. The way in which business processes are
linked – and in particular any buffering between them – will be defined by design
patterns and elaborated as linked classes, linked objects or a mixture.

The Pattern Organization 3

CHAPTER 2

PATTERNS

T
From tem

here are many types of template loosely called patterns. The familiar knitting
pattern is a list of detailed instructions on how, for example, I can knit myself
a sweater. It is more than just a generic set of instructions covering all

sweaters: the pattern will be for males of a given chest size and will specify a
particular wool thickness. I can probably choose the wool colour, but even this might
be prescribed if the sweater is to be multicoloured. This knitting pattern is not generic
in any way: it does not describe how to construct sweaters in general, merely ones for
men of a particular shape. This construction pattern is not the type of pattern we are
looking for.

plates to patterns

 The person who creates the patterns will, on the other hand, have some more
general design pattern for sweaters of a particular type: ‘heavy winter sweater with
frontal cable-work and crew neck’, for example. This design pattern is then used as a
template to create construction patterns for knitting male and female sweaters of a set
range of sizes. This design pattern is getting closer to the type of pattern we seek: it
can be applied to generate many solutions – many knitting patterns – which have
some readily identifiable things in common (shape; motifs and so on) and are
appropriate for a particular context (cold weather). And the phrase ‘heavy winter
sweater with crew neck’ may well be used as a convenient shorthand description
between experts who create knitting patterns. Furthermore, our designer might have
an even more generic pattern – a ‘crew-neck sweater’ pattern for example – to call
upon which was used as a base to develop the design pattern for heavy winter crew-
neck sweaters. The latter design pattern will inherit many of the characteristics of the
‘crew-neck sweater’ pattern but with variations to make it suitable for winter use. The
‘crew-neck sweater’ pattern may conceivably have an even more generic predecessor
– ‘sweater’ pattern from which it inherits some basic shape. This is getting closer.
 Engineering and construction inevitably have many concepts which we might
recognise easily as some form of pattern. The simple arch bridge, the suspension
bridge and the box girder bridge all have the same aim: to cross a gap. But the
engineering principles upon which each works are different. Each represents a form
of design pattern from which a construction pattern – the detailed design and
construction details for a particular bridge – can be derived. But, unlike the various
forms of sweater, they do not inherit a common ancestry even though they fulfil the
same purpose. If we wanted to cross a gap with some form of bridge, we would,
perhaps, first examine alternative bridge types. A catalogue of alternative bridge
patterns – suspension bridge, cantilever bridge and so on – would be useful,
particularly if each type were well proven and the circumstances (the context) under
which it was most appropriate (long single span; high winds;...) were documented.
Let us elaborate this pattern for a suspension bridge in a slightly more formal way as
follows:

Patterns 4

Name: “Suspension bridge”

Problem: Need for a road or rail crossing over a gap in the terrain

Context: Appropriate for gaps of between 500 and 2500 metres when there are
substantial rock abutments at each end in which to anchor the cables

Success criteria: Elegance of design is important. Cost matters but is not an
overriding factor.

Solution: A flat or slightly arched deck (set of carriageways) suspended
longitudinally at regular intervals by cables made of twisted steel wire which are
attached vertically to other similar but much stronger cables which fall in an inverted
arch (catenary) either side of the deck. These chains pass over tall towers near each
end of the bridge and are then firmly anchored in the rock abutments or in massive
concrete blocks. Because suspension bridges are light and flexible, they are
vulnerable to strong winds. The towers may need additional pendulum-like devices to
stop them swaying, and the deck may need stabilizing fins

Rationale: Stranded steel wires are, for their weight, very strong in tension (i.e. when
pulled).

This simplistic example is sufficient for me as an engineer to decide, provisionally at
least, whether a suspension bridge – as opposed to other types of bridge – is likely to
solve my problem. The keywords used: problem, context, success criteria and so on
help to give some structure to the pattern definition so that we can compare this
pattern with ones for other types of bridge. They summarise in a consistent way:

 the problem – for which we need a solution

 the context or environment with which any acceptable solution needs to
contend – type of anchoring available at each end and so on. The context is
black-and-white in the sense that the solution has to work within it (a bridge
which spans most of a gap is not a solution)

 the success criteria (Alexander’s forces) which must be satisfied if the solution

is to be regarded as successful (or, following Alexander, what ‘forces need
resolving’). Success criteria are often shades of grey in the sense that the greater
the degree to which they are met, the better is the solution. Success criteria may
conflict; when ‘low cost’ is a criterion, it will, for example, conflict with others
which imply high-quality materials or individually designed components

 the solution (Alexander’s configuration)

The Pattern Organization 5

 any rationale (optional: what makes this solution particularly appropriate)

It is worth quoting Alexander’s definition of a pattern in its architectural context:

“…[a] rule which establishes a relationship between a context, a system of forces
which arises in that context, and a configuration which allows these forces to resolve
themselves in that context”

Outside architecture, and occasionally within architecture, it can sometimes be
unclear where ‘context’ stops and ‘forces’ start. For example, in the suspension
bridge example above, the context is a geographical one of gap size and rock
abutments. But if the bridge is to be regarded as a success, it will also look elegant
and not be too expensive.

The pattern format gives us a language to describe almost any generic design.

‘Suspension bridge’ is, to bridge builders, a very basic and high-level concept. An
engineer would hardly need to refer to a book of bridge-type patterns of this simple
type. But at a lower level, where designs become more detailed, the number of such
concepts becomes very large.
 Such a definition looks like formalization for formalization’s sake – like over-
complexing something which is actually simple. This is not true although the
significance and power of patterns will not become apparent until we examine some
more difficult design problems.
 Outside engineering, there are two areas where the introduction of patterns has
had a profound effect:

 the architecture of buildings and their surroundings
 IT system and program design

Chris Alexander laid the foundations for both. Engineers and IT people cottoned on
to the elegance and ubiquity of his ideas quicker than the majority of architects. Or
perhaps architects, particularly those who promoted the brutally sharp rectilinear
shapes in grey concrete popular in the ’60s and ’70s, saw only too well that
Alexander’s analysis had sounded a death knell for their pet schemes. To see the
true significance of what looks superficially like a trite concept, we will home in on
the concept of patterns from three somewhat different directions:

 Alexander’s first widely-published foray into this area (his Notes)
 Alexander’s Pattern Language
 The Gang of Four’s object-orientated system design

The simplistic example of a suspension bridge pattern may give the impression that a
pattern is merely a description of an ‘object which solves a problem’ – like a pill
taken for a headache. Apart from being a proven solution to a problem, a pattern
describes both objects and relationships between objects – in other words structures.

Patterns 6

This will become clearer when the buffer patterns are described, and is illustrated
graphically in the Bridge pattern class diagram on page 44.

The Pattern Organization 7

CHAPTER 3

DECOMPOSITION PATTERNS

C
“Note

hris Alexander published a summary of his PhD thesis in book form with this
arcane title in 1964. He later published two series of books on architecture
which have been widely read and very influential. The first was on the

definition and use of patterns to design rooms, buildings and spaces which were
‘alive’ – places which inhabitants enjoyed rather than tolerated. The second series, of
which one book remains (as at October 2004) to be published, proposed the far more
fundamental concept that architectural forms which were ‘alive’ could be created by
repeating simple growth operations – ‘structure-preserving transformations’ – on
fifteen basic geometrical properties.

s on the synthesis of form”

 Perhaps because of its title or analytical content, his Notes took some time to
be appreciated for what it represented: an entirely new approach to designing
buildings and collections of buildings. Why was it, for example, that buildings
designed in the conventional way by groups of engineers specialist in particular
disciplines were either dysfunctional – they failed to do what they were designed to
do – or did not fit their external environment, or both.
 Alexander started by trying to define ‘design’. He suggested that every design
problem was an attempt to make whatever we wish to design – the form – a good fit
into its surrounding environment – the context. This context includes any mandatory
requirements from the architect’s design brief such as ‘south-west facing’ or ‘single
storey’. The form thus represents a solution to the design problem and the context is
the problem itself. Design therefore is a process of analysing an ensemble - the
combination of form and context – and trying to identify how well or badly the form
was aligned with each part of its context.
 He gives a simple example (which is one of construction rather than design):
the machining of a flat piece of metal so that it is smooth and level. After some
preliminary grinding, the piece is placed on a guaranteed-flat reference sheet of metal
which has been covered in ink. Any high points on the piece being machined will
appear as traces of ink. These traces are ground down and the process repeated until
there are no high points indicated. The ensemble is the piece being machined (the
form) plus the inked reference sheet (the context). The ink traces graphically
represent the misfits (in this case high points) between form and context and, in this
example, there is only one division between form and context: the two metal surfaces
being compared.
 Take now a slightly more complex example. If we wish to design ‘something
to heat small quantities of water quickly’, the context is everything a kettle or pan
designer needs to worry about: it must be safe to hold when hot, electrically safe (if
powered by electricity), spill- and leak-proof, must raise water to boiling point
acceptably quickly and so on. If the resulting form, a kettle for example, meets each

Decomposition patterns 8

of these criteria well, it is a good solution to the problem. This example is more
complex than the first in two significant ways:

 there are several different types of potential misfit (degree of electrical safety;
speed of boiling; …)

 there may also be more than one division between form and context. For

example, if the challenge is to design something which heats small quantities of
water, we may focus attention on the source of heat or power – the stove or
electricity supply. In this case, a kettle becomes part of the context and the stove
or electricity supply is the form.

This second point is subtle but very significant for our purpose.

Many ways to split form and context within one ensemble
Assume that the outer limit of our ‘design space’ – the area within which our
attention is focused and outside which we can ignore everything – is a house. Within
the house, there are many ways to split the form and context. For example, when
ignited, gas (the solution, i.e. the form) supplied to the kitchen (part of the context) is
an efficient, relatively safe and cheap way to provide heat to water (another part of
the context). The context is everything surrounding the gas flame: a pan or kettle, the
water within it, the stove, the air supply to the kitchen (needed to keep the flame
alight) and so on. The context also implicitly defines the criteria we will use to see
how well the gas flame heats water. Part of the context is ‘safety’, so how safe is a
gas flame and gas itself? Another part of the context is ‘efficiency’, so how
efficiently does a gas flame transfer heat to whatever it is heating?
 Since there are many ways to split form and context, this suggests two obvious
questions:

 are contexts hierarchical like Russian dolls? Since kitchens are part of houses,
gas flames (for cooking) part of kitchen stoves, pans are used on stoves, and
water to be heated is contained in pans, do we have a hierarchy of forms and
contexts in which one context (a house) contains many forms (rooms which
need designing to fit the house in some best way). Another ‘smaller’ context –
a kitchen – contains the usual kitchen facilities, one of which is a stove, which
must be designed to serve the kitchen optimally in some sense. And so on,
down to the smallest individual utensil.

 whether there is one best way to split any ensemble into form and context?

and one less obvious one: are these two questions contradictory?

It is worth emphasizing one point which was not mentioned explicitly in Alexander’s
Notes but is a fundamental feature of his design patterns: the criteria which, if met,
make a solution (a form) a good solution should be separate from the context. The
latter is pre-ordained and cannot be modified. The misfits (above) are the forces

The Pattern Organization 9

which need to be resolved in order that the solution is a good solution; we have called
resolution of these misfits success criteria, i.e. a success criterion is the fixing of a
particular misfit. As Alexander points out repeatedly, misfits are more obvious – they
stand out far more – than successes. Context is black and white and non-negotiable.
The success criteria are shades of grey and may mutually conflict, in which case not
all of them can be satisfied adequately.

Size versus complexity
A relatively simple task, like machining a piece of metal so that it is smooth enough
when measured against a truly flat reference sheet of metal, may take a long time if
the piece being smoothed is large, but we have only one criterion of fitness: is the
piece smooth?
 A craftsman who operates a grinding machine and smoothes metal bars for a
living has a simple job in the sense that there are no compromises to be made
between different fitness criteria. His job is a skilled one, certainly. But grinding large
numbers of metal pieces – or grinding a few large pieces – is a straightforward job.
Smoothing does not have adverse repercussions on some other possible fitness
criterion such as durability (the heat generated during grinding might, perhaps, lower
the resistance of the surface to wear and tear) because we have only included one
such criterion – smoothness. The number or size of pieces machined makes no
difference. So the size of a design problem does not in itself create complexity.
 The problem of designing ‘something to heat small quantities of water quickly’
is different. Here we have several fitness criteria to manage at the same time. If each
criterion were totally independent of all the others, the designer’s task is still simple;
it may take considerable time to find a design which satisfies all fitness criteria – is it
safe to hold when hot, leak proof, and so on, but if these criteria do not affect one
another, the design process is easy to manage. The designer merely designs for each
fitness criterion separately and then tests for how well that criterion is met. But the
designer’s job suddenly becomes complex when the criteria are not independent of
one another.
 One criterion which is almost invariably not independent of others is cost. A
kettle or pan which must conduct heat quickly from the gas burner or hotplate of a
stove to the water inside needs a base which is a good conductor of heat, which is one
reason why pans for serious cooks have copper bases. But copper is more expensive
than steel or cast iron, for example. So when designing a pan, the designer cannot
design for each fitness criterion independently. A pan with a Grade-A copper base is
expensive, and if maintaining an even temperature were important, a thick copper
base would be used. But the thicker the base, the heavier it is and the more heat it will
retain after use; it becomes more difficult to wield and a burn caused by accidental
contact becomes more likely. The designer lives in a world of compromise.
 Readers of The Coevolving Organization may now be recognizing a common
thread. ‘The different faces of K’ in Chapter 5 of The Coevolving Organization
described what it might be like to attempt to reach a peak of high fitness by adjusting
gene values (cf our different design criteria). Where genes are independent, the
landscape to be climbed was a simple one which gradually sloped upwards to a high
peak – like Mount Fuji. Any improvement in fitness caused by adjusting one gene

Decomposition patterns 10

value was always good: it never had the side-effect of adversely affecting the fitness
caused by the settings of other genes. When genes were linked to one another – were
not independent – climbing became a far more difficult task. The landscape over
which we were climbing was no longer a simple smooth path to a high summit. It was
instead a rugged landscape with lots of small hills with steep sides. It became all too
easy to become marooned on the peak of one of the smaller hills which represent
relatively low fitness, in our case a fairly expensive pan with moderate heat
conduction and only averagely safe.
 The number and strengths of links between design criteria is what in The
Coevolving Organization we called K-complexity. Where design criteria – the forces
– are mostly independent (‘attractive colour’ and ‘efficient heat conduction’ are
probably independent, for example) the landscape is ‘low K’. When the design
criteria have lots of interdependencies (copper bases conduct heat quickly but bump
the cost up, for example), the landscape is ‘high K’.

Complexity and decomposition
When these cross-connections occur, with the resulting compromises and complexity,
design becomes far more difficult. In his ‘Notes’, Alexander proposed that this was
why so many buildings in the developed world are dysfunctional. He contrasted the
way in which houses were traditionally constructed in undeveloped countries with the
way they are constructed in developed countries.
 The simple hut in the undeveloped country was usually built – hardly designed
– by one or two individuals. These builders were not taught house-building in any
formal way; instead they absorbed ideas by watching others. And when their hut was
under construction, passers-by would suggest better ways to do things. In other
words, there was no guidebook, no specific general rules to be learned, and no formal
tuition. But the resulting huts were simple and rarely changed in basic structure from
one generation to another. They fitted into the local environment well.
 The house or office block in the developed world is designed and built very
differently. They are multifaceted (see page 51) and, as we shall see, almost always
complex, even the highly-standardized houses built on large housing estates by a
single developer. Architects and engineers are trained. This training is essentially the
absorbing of a large number of general concepts of ‘good design’ plus a bit of theory.
Inevitably, some of these concepts clash with others – and most of them usually clash
with ‘lowest cost’! When an architect is commissioned to design a house, he or she
applies these general principles to the design brief, the local topography, any
prescribed orientation of the house, local services (whether a foul drainage main is
available to remove sewage, for example) and so on. What the architect, unlike the
builder of the simple hut, is unable to do is to copy a design which has been proved
successful by centuries of use in the same locality. He or she will, if necessary,
modify the site where possible to suit the brief: wet clay soil? just cut down nearby
trees (which absorb water in dry summers but not winters) and build deeper
foundations to avoid subsidence or heave; windy exposed site? create an artificial
earth bank and provide additional heating on north-facing rooms; and so on. These
would, individually, not necessarily lead to dysfunctional houses. To see where

The Pattern Organization 11

dysfunction arises, we need to look more deeply at how changes occur in the
structure of the simple hut and of the modern house.
 Changes to the structure of the simple hut occur gradually, and when they
occur they are rarely radical changes. There are two counteracting forces at work: the
builder usually lives in the hut he built. If there is something wrong – perhaps there is
not enough ventilation in an unusually hot summer, he may well poke another hole in
the wall or expand an existing window hole. But almost certainly he will not radically
redesign the hut to improve ventilation; local tradition dictates certain hut shapes
which must be adhered to. He may, in fact, be completely unable to design a hut from
scratch if he were uprooted into a very different environment. His hut may not last
long, a few seasons perhaps or much less if his is a peripatetic lifestyle following
herds or flocks to new pasture. So he has regular experience of building new huts and
making minor changes to existing ones. He may even never have reason to want to
change the design of his hut: years of fine-tuning of the design by himself and his
colleagues and predecessors have removed any real need for redesign if the local
topography and weather remain roughly the same.

These two features:

 immediate response to fix problems
 the weight of tradition which prevents radical changes

together make the house structure adapt easily to changes in requirement (such as
additional ventilation needed to cope with the unusually hot summer) without
creating other problems: an additional ventilation hole is unlikely to cause side-
effects such as structural instability. Each problem – a ‘misfit’ in Alexander’s terms –
can be fixed independently. In this simple hut, each misfit is independent of others
and can be fixed independently of others. This can be inferred from the fact that the
construction details are relatively unchanging. It implies that if, back in the mists of
time, the various details of construction were linked such that minor changes to one
(wall strength, for example) had a knock-on effect on others (coolness in summer, for
example), these interdependencies had been gradually severed over the passage of
generations. If not, each house would be different and
there would not be any uniformity in construction. In other words, the standard
construction and its unchanging nature are evidence that the construction has reached
equilibrium: there is no longer any need to make significant changes. This
unchanging nature is evidence that various details of construction are independent of
one another. If not, minor changes would for ever be upsetting other parts of the
construction (our ventilation hole could weaken the wall; weakening the wall then
might have the knock-on effect of making the structure sway in the wind; the swaying
in the wind then might have a further knock-on effect of making the structure skew
around the centre which further weakens the wall; and so on). Any structure – or
indeed any system – in which different parts can not receive minor modifications
without upsetting others, is for our purposes complex.
 The architect designing a modern house has a fundamentally different problem.
His or her requirements brief, in the context of the site on which the house is to be

Decomposition patterns 12

built, is full of potential conflicts. Any errors in design may be found out too late and
by the eventual occupiers and not by the architect. The error may have been repeated
many times on a large housing estate. Architectural briefs insist on change for
fashion’s sake – what will sell rather than what best fits the locale. These conflicts
make the construction complex in the sense defined above, where fixing one part of
the design brief such as ‘make the house cool in summer’ (perhaps by providing air
conditioning because the site is an exposed one) conflicts with the requirement for the
house to have ‘low running costs’ and the need for ‘quiet’ (air conditioning in small
houses can be noisy). Each attempt to resolve a misfit, perhaps by installing larger air
conditioning ducts in an attempt to reduce the background hiss needs thicker ceilings
to house the ducts, which entails lowering the ceiling height of the rooms, which
….and so on. The large number of individual issues
which the architect needs to resolve plus the fact that these are not independent of one
another means that the architect needs to either:

 consider all factors at the same time, which for even a small building may be
impossible

 or

 divide the factors into groups (heating/cooling/ventilation; acoustics; room

shape and height; …) and consider each individually. He or she might then
subcontract the solution of each group of issues to an expert in that field. A
heating/cooling and ventilation expert, for example, should be able to specify
the most cost-effective solution to meet the architect’s brief for those factors.

There is, however, one fundamental flaw in grouping factors into expert areas, and
this is at the heart of Alexander’s argument:

there is no reason to suppose that the way in which a designer groups parts of the
design into such ‘expert areas’ has any relationship to any independent groups which
naturally exist in the building to be designed.

The building may conceivably have no groups of factors which are independent – in
which case it will be extremely difficult to design successfully. But if it has such
groups – for example the lighting, depth of the foundations, roofing material and so
on are largely independent of the heating and cooling system chosen, then any such
groupings which are independent of other groupings (‘roofing’ may be grouped along
with ‘outer wall construction’ and similar items into a group called ‘building fabric’)
can safely be designed as a group in the knowledge that there are no knock-on effects
of any design decision upon any other group. And as Alexander pointed out, the
groups we define for convenience into expert areas such as ‘acoustics’ may and
probably will be out of kilter with the naturally occurring independent groups.
Experts will thus make decisions about things which are best for their area but which
upset decisions being made by the experts in other areas. Unless we design within
naturally independent groups, we store up trouble for the eventual construction.

The Pattern Organization 13

So how do these strictures apply to business? If the design of a business’s
organization structure does not reflect any naturally independent groupings within its
business processes, any change to one part of the organization as a result of a change
in a business process can have unpredictable repercussions throughout the
organization. Since organization groups are rarely completely independent – they are
merely more autonomous than if the organization were cut in other ways – we can
tackle this problem with two complementary approaches:

 ensuring that the organization is structured around any naturally ‘more-or-less
independent’ groupings of business processes

 then deliberately engineering buffering between the organization groups we

have chosen such that changes within a group are as far as possible invisible to
other groups. This would, of course, be unnecessary if such groups were
completely independent. But this is a rarity, so we need to minimize the effect
of such changes with some artificial organization constructs which make a
group look the same to its peers even when it changes radically internally. Real
organizations contain lots of groups which are independent of each other: for
example, sales teams selling different brands in different countries are largely
independent of each other, but each sales team will have continual contact with
the relevant customer services team which processes orders resulting from their
efforts.

A Pattern Language
Alexander’s Notes may have been written for architects but was much better
understood by those with a scientific and mathematical background. His later books
are different: they are targeted squarely at practising architects, town planners and
those who want to design and build their own houses. This does not mean that the
content is any the less significant but it is accessible to a more general readership; its
precise style is offset by an enthusiasm for buildings which are ‘alive’ – a concept
which is difficult to pin down since it is rooted in people’s perception and is
extraordinarily difficult to define analytically (this search for an analytical definition
and the profound consequences which emerge are the subjects of his second series of
books).
 Although Alexander’s ideas predate much of the technical work of the past two
decades on coevolution, his central tenet is that buildings, landscapes and towns
should not be designed centrally in the conventional way – ‘on the drawing board’.
Instead, they need to evolve in a way which is driven by those who live there. Failure
to do this results in buildings and townscapes which keep its inhabitants in a state of
tension. This tension arises from the simple fact that people have evolved over many
thousands of years to live in accommodation of a human scale which is not built to a
precise plan: smaller parts of it blend seamlessly with others and into the wider
landscape. Its antithesis – the concrete tower block – is tall, regimented and probably
out of kilter with its surroundings.

Decomposition patterns 14

 Before we can identify the origin of this tension, we need to look more closely
at how people live. When people use a house, office, garden, park, fields or even a
roadway, their usage is a series of events. When I have a dinner party, my dining
room is the focus of certain events which are repeated, broadly but not identically,
each time I eat there. Those who are dining enter the room, sit down, chat, are served
a first course, eat, chat again, then someone clears the plates away and brings on the
next course, and so on to the end when the diners troop out to the drawing room. No
dinner party is identical with any other but the series of events is similar. If we ignore
the quality of the food and conviviality of the company, the success or otherwise of
the dinner is determined partly by the room itself. Is it lit well enough such that diners
can see what they are eating, but not lit with harsh lights or with people seated facing
the window and directly into the evening sun? Is the size and shape of the room
consistent with the size of the party? Is the décor consistent with the furniture: does
my prized two hundred year old Georgian table-and-chair set match the wallpaper,
cornicing and room height? Each mismatch – each lack of fitness for purpose –
creates unease, however small, among my diners.
 Alexander’s point was that every place to which people go regularly is
associated with a repeating series of events. This series of events in my dining room
is inextricably linked with the way in which the room was designed. A well designed
room with the right height, the right ratio of length to width and with natural lighting
from at least two adjacent sides creates a series of events which makes for relaxing
and enjoyable use. A badly designed room – one which perhaps has low ceilings
(engendering feelings of claustrophobia), which is lit with a single large picture
window on one side facing the setting sun, which is some distance from the kitchen
(allowing food in transit to get cold) or too near the kitchen (allowing cooking smells
to permeate) can mar a dinner party even if the food and wine are excellent. To take
another even simpler example, most people are afraid of heights. Were I fortunate
enough to own a luxury apartment in a high-rise block overlooking New York’s
Central Park, I would still be uneasy about floor-to-ceiling windows which were not
recessed (i.e. were in line with the wallpaper) and, on the outside, had no ledge.
Having walling or panelling for about a metre at the bottom such that the window
stops short of the floor makes a difference. If in addition the window is in a recess, a
small bay with window seats for example, my unease melts away. My logic tells me
that heavy laminated plate glass will prevent my falling out of the floor-to-ceiling
window. But my innate fear of heights makes me shun the area near such a window.
We could thus specify designs for dining rooms or windows or any building
component which make us feel at ease (and, alternatively, what designs to avoid and
which create unease). If a house or apartment block were built using a collection of
such successful designs and these designs were complementary and not clashing, they
will reinforce each other. This principle does not only apply to buildings. The
successful design of gardens and courtyards follows the same principle. One of
Alexander’s best examples is that of a porch. For most architects, it is somewhere to
shelter when opening the front door from the outside or when locking the door on
leaving. If it is an enclosed porch, it is somewhere to shed gardening boots and to
keep umbrellas. But to Alexander it is part of an ‘entrance transition’ which prepares
the visitor smoothly for a different environment. When approaching the house, the

The Pattern Organization 15

level should change, the light should change (perhaps with a sweeping path between
trees), the texture underfoot should change (perhaps asphalt switches to gravel) and
so on. The successful design for ‘path’ should link seamlessly with that for ‘porch’
and prepare incomers for the larger transition from outside to inside the house (or
vice versa).
 Alexander described a collection of such designs. The principle was not to
design from bottom up using the smallest designs (window; doorway; ceiling height;
…) but to decompose whatever it was we wanted to build into many smaller designs.
This was to ensure that the designs fitted together. Were we to cobble together a
house using designs for window, doorway and so on, we would probably find that the
resulting house lacked cohesion and was a misfit to its building plot. ‘Top down’
design avoids this. We first decide on the scope of what we want to build. This is
mainly geographical: do we want to include a design for the approach road or do we
have to accept what is already there? Do we want to design the house and garden
together such that there is some unity between the two and such that going from one
to the other is a seamless transition? Wherever we set the bounds (scope) on what we
want to design such as “house and garden but excluding approach roads”, we select
the ‘largest’ appropriate designs – perhaps ‘four-bedroomed house’, ‘courtyard’ and
‘grass lawn’. Sensibly however we will include any salient features of the
neighbouring house which might affect our house-to-be such as neighbouring
windows overlooking our garden. ‘Courtyard’ will in turn be composed of smaller
complementary designs for courtyard features which promote use of the courtyard: a
sunny corner with a bench; a shady corner for when the sun is at its height in
midsummer; more than one entrance and paths to encourage their use; an entrance
transition to prepare someone leaving the house to enter the courtyard, and others.
 Our entire design will be made up from decomposing the highest level scope
into smaller and smaller designs. These smaller designs are not of fixed sizes. Like
the knitting pattern for a sweater, the designs represent shapes rather than sizes. A
dining kitchen, for example, may have a length-to-width ratio of 6 to 4
approximately, but whether this is six metres by four metres or nine metres by six
metres is irrelevant. There will be some absolute lower and possibly upper size limits:
there is no point, for example, in specifying a dining kitchen too small to fit a dining
table or even a breakfast bar. The designs thus define the geometry – the shape – of
the result but not its size.
 A collection of such designs may fit one culture but not another. A design for a
dining kitchen will not be used by an ethnic group which never eats in the kitchen. A
design for a roughly square dining room which was intended for use with a round
table would be anathema to a very patriarchal group which sat in order of precedence:
paterfamilias at the head of the table, with children in descending order of age, seen
and not heard, at the other end. One can imagine a pool of all known designs of such
forms from which a selection is made appropriate to each such cultural group. When
the designs appropriate to a group are successfully used again and again by that group
to build houses, blocks and even whole towns, the individual designers do not need to
design from scratch: they know intuitively and from group lore which collection of
designs to use. It becomes to them an indigenous language.

Decomposition patterns 16

each design is a pattern, and patterns (e.g. ‘dining room’)
are composed of smaller patterns. The collection of all
known patterns is a pattern pool

the collection of all patterns appropriate to a particular
culture is a pattern language

What makes a successful pattern? We can imagine a world full of unsuccessful
building patterns which fulfil some commercial objective but which are unpleasant to
inhabit. The high-rise concrete-framed tower block built to provide low cost housing
for the masses could equally be specified using patterns. It typically has thin walls
separating neighbours (who can thus annoy each other – unintentionally or
otherwise), and an unpleasant dour exterior with sharp edges and extreme regularity
of construction. It is a positive deterrent to neighbours who – culturally – would
otherwise pass the time of day with each other: there is no street for them to walk
down to do so, just an unpleasant shaded corridor also in dour concrete. And so on.
 We evolved from a less developed world, and in the less developed world
regularity of construction was non-existent. Where everyone builds their own house,
each hones the layout to whatever they find most congenial but within the constraints
of their ethnic custom. Why do we feel unaccountably at home in the towns which
have evolved over many centuries and whose streets are narrow and winding? It is
more than a feeling of “gee that’s quaint”. Similarly, why do we feel strangely at ease
in old country hotels which have sprouted over the years in strange directions and on
many different levels? And why do we not experience these feelings in modern towns
and modern hotels even though the facilities may be incomparably better? Why is old
concrete depressing whereas the similar use of natural stone, which takes on lichens
and a patina of age, is welcoming? Brick is an even more telling material. Hard-faced
brick never mellows; brick with a slightly more friable surface and some irregularity
in manufacture becomes less harsh with age. It may never look ‘natural’ – red is not a
colour common in nature – but eventually blends in. Anyone doubting this should
visit London’s Hampton Court Palace, much of which was built in the Tudor era and
has had a few years to settle down.

Object-orientated system design
A later chapter will look in more detail at complex IT systems which went adrift
during development because project managers and system designers ignored side-
effects – the inevitable accompaniment of complexity where a change in one area has
an unanticipated knock-on impact on another area. Size and complexity are usually –
and wrongly – treated as synonymous. But, as The Coevolving Organization stressed
repeatedly, the essential difference between them is one of cross-connections. A
company’s sales-force in one country will, for example, very likely have an identical
structure of:

The Pattern Organization 17

 sales director
 regional sales managers
 area sales managers
 sales territory men and women

in a strict hierarchy. It might be a large hierarchy with hundreds of sales men and
women at the bottom of the tree, but is relatively easy to manage. There are no links –
no cross connections – between a salesman in the north of the country and a salesman
in the south. Setting sales targets is similarly easy because poaching customers (at the
store level at least) from a colleague is impossible. A store is either in one sales patch
or another. If a store in my patch has an unusually successful promotion of one of the
brands I sell, it will be at the expense of the market share of competing brands. The
worst which could happen within my company is that if this store were near the
boundary of my sales territory, customers who usually patronized a store in the
neighbouring territory were seduced into mine instead.
 Large thus does not necessarily mean complex. But does complex mean large?
Not necessarily. It can be diabolically awkward to run a relatively small but largely
matrix-managed business – exemplified by the visible cross connections on the
organization chart. If I am sales manager for my country and for the manufacture and
marketing of low-cost Brand A globally, I and my colleague who is responsible for
the sales in his country and for the manufacture and marketing of more-upmarket
Brand B globally can have an enjoyable time frustrating one another. My colleague
wants to promote his Brand B in my country which will steal some share from my
Brand A by up-trading Brand A’s usual customers. This will clear his embarrassing
overproduction of Brand B but make no profit in my country which is what I am
measured on, since import tariffs on Brand B are high whereas my Brand A is made
locally. In return, however, I could arrange a quid pro quo for my colleague…
 IT systems are prone to the same underlying problem. They can be very large
and are certainly technically ‘complex’, but are not necessarily complex in the sense
with which we are concerned. What matters is whether the thousands of objects –
pieces of program code which ‘do something’:

 are insulated from each other as far as possible
 can make no assumptions about how the others work

 and
 communicate when necessary in a regimented way which allows the caller

to ask for something to be done, to print a line of text for example, but is
strictly barred from finding out how the action is actually performed.

By no coincidence, our coevolving business objects closely resemble these IT
objects, where each of the latter is a self-contained section of program (a process)
with its own associated data. Such objects communicate with each other by passing
messages using formal message formats and protocols as described in Chapter 7 of
The Coevolving Organization, but how they perform their functions is deliberately
hidden from others. This ‘information hiding’ for computing objects was introduced

Decomposition patterns 18

as a way to protect an object from being tampered with by other objects or from
suppositions being made on how it worked internally. These objects exist
independently of others, hide internal information on how they do what they do from
others, respond only to formal messages, have standard ‘classes’ of object (sales
products; field sales territories;...) with ‘instances’ of each object (a particular brand
being sold; a particular sales territory) and so on. The programming languages which
provide these features of classes, objects and so on are unsurprisingly called object-
orientated programming languages and are generally thought of as a recent invention.
This is wrong: they had their origin in the 1960s simulation languages whose aim was
to model the real world.
 This book is not aimed primarily at IT experts and a summary of object-
orientated programming in isolation would be a sterile experience for non-specialists.
Fortunately, however, we can approach it from a slightly different angle via its
origins in simulation:

 from

 simulation of the real world
 to

 simulation languages
 to

 to object-orientated languages.

 The present writer’s first ‘real’ job was with the UK’s former national rail
authority writing computer programs which simulated and scheduled the movements
of passenger trains in the most complex railway networks in England: ‘complex’ in
the sense that one train movement could have repercussions on many others. The aim
was to find out how to regulate the flow of trains better. The targets were to improve
how well they kept to the timetable and to identify opportunities for better use of the
existing track capacity: a better service, more trains or ideally both. So, if only for
selfish nostalgia, the following examples are taken from railway simulation. This will
lead naturally to the concepts underlying object-orientated programming without
dwelling too much on the purely IT aspects.
 Firstly, we need to draw some boundaries. We could in principle try to
simulate the entire railway network but this would be a mammoth job and not very
productive. Instead, following Alexander’s decomposition principles (see page 1), we
split the national railway network into sections which are as autonomous as possible.
This usually means dividing the network midway down long sections of simple track
as opposed to trying to split up the network in the middle of a station, marshalling
yard or junction. We also need another type of division. Train movements occur
round the clock, but are much less numerous in the early morning than in the 08:00 or
17:30 peaks. A late-running evening train could possibly cause a train the morning
after to start out late, but this is unlikely: there is usually ample slack in the overnight
timetable and such knock-on effects are only normally apparent to passengers if there
has been major disruption caused by snow or labour strikes when the engines and
carriages end up in the wrong places overnight. So, following Alexander, we have
selected for simulation a slice of the railway network and timetable whose

The Pattern Organization 19

performance will be as little affected as possible by the behaviour of trains in adjacent
networks or by their behaviour the previous day.
 The railway network under consideration then needs to be broken down into all
its components: track, junctions, signals and so on, and the relationship between each
defined. The lengths of track between junctions need specifying and the relationship
between the track on either side of each junction needs to be codified. Large junctions
look like spaghetti to the uninitiated but are made up of many combinations of a
small number of simple junction types.

 Figure 1 - scope of simulation

Some of this, such as the track, is unchanging, at least in the short-term. Some –
junctions for example – change when a train movement is set up by the train regulator
(signalman). Some – the signals themselves – change when the regulator sets up a
route and later when a train passes in order to protect any following or otherwise
conflicting trains. In summary, we have many different classes of ‘thing’ (such as
signals – and trains themselves) to simulate.
 To make the simulation programs reusable for other railway areas and
timetables, it is essential that all the details of our timetable and slice of the railway
network are presented to the simulation program purely as data. So what does the
program itself contain? Firstly the basic mathematics of how trains start, move and
slow down, together with the logic controlling the signals which prevent one train
running into another. But the performance characteristics of different types of engine
and carriage will be presented as data in order to cater for the numerous varieties of
each which are present on a real railway. Secondly, the program will need to
undertake the actual simulation of train movements: to move a train from A to B in a
realistic and safe way.
 To manage each type of item to be simulated, we could categorise them as in
the following example:

locomotive
 electric locomotive
 type A
 type B
 type C

Decomposition patterns 20

 diesel locomotive
 type D
 type E
 type F

For simplicity we will assume that each locomotive type is permanently coupled to a
fixed number of carriages and we will treat the combination as a single unit in what
follows. The details for each type of locomotive would contain everything needed to
simulate its movements: motive power, braking characteristics, weight (including
carriages) and so on.
 We thus have an abstract (high-level or generic) class of motive power:
‘locomotive’. The details associated with this will be scant, and will be mainly the
mathematics needed to calculate the movements of any locomotive, given some
information about the track to traverse (up hill and down hill gradient, stopping
places and so on).
 At the next level down, we have two basic classes of motive power – electric
and diesel – which work sufficiently differently for them to be treated as two species
rather than as differently performing units of one basic design. The definition for each
inherits from the parent ‘locomotive’ the mathematics needed to calculate its
performance, but this is fleshed out by additional details peculiar to each class of
motive power.
 Finally, we have the individual locomotive types themselves. The definition for
each inherits the mathematics from its grandparent ‘locomotive’ and the fundamental
details of its motive power type (electric or diesel) from its parent. ‘Locomotive’ is
less well defined than ‘electric locomotive’ which is in turn less well defined than the
‘type A electric locomotive’, one or more of which will have their behaviour
simulated. The ‘Type A electric locomotive’ is said to have a concrete class because
it is something which can run on a real railway and can be simulated. ‘Electric
locomotive’ and ‘Locomotive’ on the other hand are one and two steps respectively
removed from the real thing and are abstract classes.
 At present, however, ‘Type A electric locomotive’ is merely a detailed
definition of a particular locomotive. To simulate the movement of one, we need first
to create it. We may have lots of Type A electric locomotives in our simulation, with
various positions and with different speeds, and we need to create one or more
‘instances’ of each. When we create an instance of a (concrete) class, we are creating
an object using the detailed definition (in our case the locomotive design manual and
blueprints, plus position and speed on the track). An object is thus an implementation
of a definition. The definition is static but the object will ‘do something’ – in this case
move around our virtual railway.
 From our point of view, what is equally important – perhaps more important –
is how objects communicate with each other. We stated in passing that objects treat
each other as black boxes and are unable to find out what happens within other
objects. They can only make requests of one another with messages. These messages
are very stylised: more akin to the format of a formal invitation to an English
wedding (“Mr & Mrs X request the pleasure of Mr & Mrs Y at the wedding of their
daughter Z ….”) as opposed to an informal note. And the only way an object can

The Pattern Organization 21

request services or data from another object is via a message. The structure of the
message is determined by what the receiving object expects to receive. When a squad
of soldiers is being drilled on the parade ground, the drill-instructor will shout a
formal command – perhaps “By the left, quick march”. The soldiers will obey this
command if and only if it is in their repertoire of commands and in exactly the right
format. If not they will ignore it. Similarly, an object will only carry out a request
from another object if the request is in a format to which it responds. It defines – and
notionally publishes or advertises – every request it will accept and the manner in
which that request may be framed. A drill squad receiving a command “Left foot
forward, stride out” will, if they are well-trained, be silently ignored. An object
receiving a request which is not in a format it accepts will also ignore the request, or
possibly send a courtesy message back saying it is unable to carry out the request. An
object can accept many different requests (cf. “Stand at ease”; “Halt”; “Present
arms”; …) and the collection of all valid requests is called its interface. Furthermore,
different objects can accept requests presented in the same format. A British and an
Australian army squad may both be legitimately commanded to “Present arms” but
are entitled to perform the drill task somewhat differently. (Those who have read The
Coevolving Organization will have, by now, realised that these messages are the
formats and protocols which underlie C-couplings; one object C-coupled to another
object effects changes in the behaviour of the other via a message).
 We are now ready to run. Assume that we have the entire infrastructure –
signals, track and so on – in place within the simulation program. To simulate the
movement of a particular Type A electric locomotive (the ‘08:40 from Great Snoring
to Houghton St Giles’) we first of all must create an instance of one.

Each instance is a combination of:

data (position, speed, weight…)
operation (also called method – the mathematical process needed to simulate
the movement of the train)

The operation used to move the train is invisible to the rest of the simulation
program. Once an instance of a train is created, it will move under its own steam,
respecting signals and traversing gradients correctly. In practice, the classes
Locomotive, Electric Locomotive and Type A Electric Locomotive may only contain
such things as acceleration and braking characteristics. Further objects such as Signal
and Track will contain other settings needed in order to simulate the movement of the
train. Simulating the movement of this train might then look something like:

a. Create-instance-of Type A electric locomotive at position X with speed Y
(we now have a particular Type A electric locomotive object which can do
something, as opposed to just its design or class)
b. Simulate [this] Type A electric locomotive [using] Signal, Track,…etc

Decomposition patterns 22

But this is simulation and not mainstream IT. What about those more ‘normal’
systems which run business processes such as customer services? These ‘more
normal’ systems are actually simulations of the business processes. The processes are
(notionally) defined as classes in a business process handbook and the IT systems
which run them are (roughly) collections of business process classes. The systems
themselves, when being run, are nothing more than instances (implementations) of
the business process classes although they probably look nothing like it.

The Pattern Organization 23

CHAPTER 4

ORGANIZATION AND BUSINESS PROCESSES

A
Introduct

business with well-thought-through business processes implemented
consistently throughout the organization has an obvious advantage over its
less well-structured competition. But it still has two further challenges:

ion

 how can the business processes be engineered to evolve at the same pace as the
moving target of competition and the changing requirements of customers? In
other words, how can this very structuring be prevented from putting ‘treacle’ in
the way of poise and responsiveness?

 how can exceptions be handled? These are either unusual events defined within

a business process as ‘to be handled manually’ or events for which there is no
process defined (and creating business processes is usually one of these!)

The advantages of patterns were recognized by many professions, notably IT program
designers who saw immediately the connection between the autonomous (non-
interfering) nature of patterns and the 'objects' of object-orientated programming. For
the same reason, managers of large projects seized on the similarity of patterns with
project tasks: any project is easier to plan and runs more smoothly when streams of
tasks can run in parallel without interfering.

The first challenge was dealt with at length in ‘The re-birth of growth’ in Chapter 6 of
The Coevolving Organization.

The second can be exemplified as:

“To whom do I need to talk in order to understand the
issue or get permission for me (or someone else) to
take action”.

In a large or complex organization, this is not easy to answer since, by definition,
there is no business process extant to guide me. And the result is thus all too often
either inaction or a reaction which is far too late. Say, however, that the business had
been structured such that the role of each division, each department and even each
individual is as autonomous as feasible in the sense that no other way of splitting up
the organization could make them more autonomous. It then becomes easier for me to
get information or make my decision since the information about my problem and the
individuals I need to consult are probably clustered around me – organizationally if
not geographically.

Buffering 24

 Note that this organization structuring is in addition to formal business
processes (which also work better in such an organization). The designs for the
organization units are patterns.

Formal business processes and such organization structuring are very closely related,
but even a business which has ill-defined business processes can gain from a ‘well-
patterned’ structure; indeed it may gain more that a business with good processes
since, in the absence of good processes, it will handle more issues as ‘exceptions’.
 However, business processes themselves will change. Some will evolve
smoothly in a planned way as supply, manufacture and distribution evolve. Others
will be forced to change rapidly in response to competitors' threats (their new
technology, new ways to market and so on). Amending business processes in a hurry
can be perilous, particularly if the business is accustomed to gradual change. Patterns
not only define objects but, more importantly, define how they communicate, and
special patterns are now available which allow flexibility to be incorporated in the
links between objects. A pattern can, for example, be an object or structure of objects
which acts as an intermediary (buffer) between other objects, perhaps as an
interpreter. Patterns can be objects and object structures but can also be more generic
classes from which objects themselves are derived.
 Processes for most businesses are usually grouped under three umbrella
headings:

 purchase to pay (buying something through paying for it)
 order to cash (receiving an order through the customer’s payment for it)
 record to report (roughly, all the remaining back-office functions)

To illustrate the introduction of buffering into an established business process and an
organization designed around that process, consider the following simplistic example
of a traditionally-structured business:

 customer services team
 receives a telephoned order from someone in the sales force
 checks customer’s credit status
 checks if stock will be available in the distribution depot either now or

 when the order will need to be shipped
 earmarks existing stock for the order
 requests the manufacture of extra stock if necessary
 prices the order and applies promotional discounts
 despatches the order details to the logistics team

 logistics team

 allocates truck space
 issues instructions to the depot to pick stock at the right time and then load

the allocated truck

The Pattern Organization 25

 sends a despatch note to the customer’s receiving depot or store (‘this is
what we have sent you’)

 customer services team (again)

 issues an invoice based on the despatch note (which may or may not reflect
100% of what the customer ordered; some items may be back-ordered;
some might be on a later delivery that day and so on)

 receives the customer’s cheque payment (which may or may not be a
payment in full)

 finance ‘accounts receivable’ team

 banks the payment if not sent by bank transfer

There are several ways to map the bulleted () tasks to teams. The split between
customer services and logistics is often on the basis that customer services deals with
individual orders from customers whereas logistics deals with aggregations of orders
and trucking. However, following the principles described earlier, one acid test for
whether the organization is out of kilter with the business processes is simply whether
a lot of communication – particularly two-way communication – occurs between
them. If it does, and in particular if this communication is between individuals who
are checking and expediting rather than simply a result of systems passing
information, then we need to see if there is some other ‘cut’ of the organization which
will result in the groups who spend a lot of time communicating being part of the
same team.
 However, do teams matter; and what is a team? In principle, the business could
be a collection of individuals subservient to computer-driven business processes. But
this takes us back to the fundamental issue of whether we want a monolithic ‘top
down’ business, and the contention in The Coevolving Organization was that there
are better ways to structure a business than that.
 If we elect to follow the principles outlined therein, we try to define areas
which are as autonomous as possible. This means that they need to communicate with
other areas as little as possible. This does not mean that information must be
squirreled away within each coevolving object – the customer services team for
example – but that each team must be free to fulfil its own objectives and make
decisions without constantly needing decisions or approvals from another individual
or team. It does mean that information which is purely about the internal workings of
a team does not need to be passed on. Furthermore, such information should not be
visible to the team’s internal ‘suppliers’ such as those downstream – logistics for
example, or internal ‘customers’ upstream – the sales-force, for example. Customer
services are ‘contracting’ with the sales-force to arrange delivery and accept payment
for all orders the sales-force manage to solicit. In turn, logistics are contracting with
customer services to arrange for the loading and shipment of any orders sent to them
by customer services. This implies – correctly – that the logistics team is invisible to
the sales-force! (If I buy a faulty new car, I tell the dealer to fix it or supply a
replacement; it may be the manufacturer’s fault or shoddy handling in transit or even
a fault in a bought-in accessory; but my contract is with the dealer).

Buffering 26

Let us assume now that we have:

 well designed business systems for order-to-cash (as above)
 processes for accommodating exceptions, both real exceptions and

possible exceptions: for example, a customer who, in response to the hard
selling of an important impending promotion by the sales-force, has
ordered slightly in excess of his credit limit

 teams whose grouping and objectives reflect the autonomy principle
outlined above and described at length in The Coevolving Organization.
These teams can – and probably will – be composed of smaller teams
structured on the same principle which could be summarised roughly as
“autonomy to fulfil their objectives”. These objectives may (deliberately!)
conflict with those of other teams as described in Chapter 4 of The
Coevolving Organization: customer services wants to achieve on-time
delivery with each order containing exactly what the sales person ordered
for the customer (no short shipments; no item substitutions; no extraneous
or damaged items shipped;…). Why? Because that is their ‘contract’ with
the sales-force. Logistics on the other hand want to send out full trucks
when trucks are available; they want to avoid part-loaded trucks, the need
to buy additional emergency trucking, unbalanced trucks (ones which carry
too many lightweight pallet-loads or too many heavy pallet-loads; ideally,
each truck should be more or less at its volume and weight limit), and so
on

 This is a simple and traditional business structure and probably works well
with small customers. Now assume that business grows and customers become larger.
Big customers, supermarkets for example, order direct, either by phone or more likely
by computer and electronic data transfer. They pay by bank transfer. Orders to be
delivered into just one of their distribution depots may consist of several truckloads.
We have thus added some new business processes:

 direct ordering
 payment by bank transfer

 But we have also fundamentally altered the role of customer services, and the
sales force’s role has become one of business development. Customer services are
now responsible directly to the customer for the fulfilment of each order. The sales-
force’s role and objectives have changed; and customer services’ ‘customer’ is now
the real customer. This change may seriously upset the effective working of both
customer services and logistics, and reduce the number of on-time accurate deliveries
until both departments reorganize to accommodate new processes and new
responsibilities.

The Pattern Organization 27

So how can we handle business process changes like this in such a way that the teams
(and external contacts) with which customer services, logistics and sales force
communicate are insulated from the change?

The Pattern Organization 29

CHAPTER 5

BUFFERING

I
Introd

n the preceding chapter we looked at how we could structure an organization such
that when business processes change, or perhaps when a team changes its
structure as a result of losing or gaining an individual with some key skill, the

teams (and external contacts) with whom each team communicates are insulated from
the change. If teams were completely independent, this would not be a problem. But
teams are linked by both computer systems and personal contact with other teams.
We saw that if we structured the organization correctly by creating teams which are
as autonomous as possible in the sense that any other way to divide up staff into
teams would result in more overall communication between teams and less within
teams, then the knock-on effects of change within a team on other teams is
minimized. But ‘minimized’ here means minimized with respect to any other way to
cut the organization. There is, however, a way to reduce the impact on other teams
further if we are allowed to create some artificial organization ‘constructs’. Exactly
which construct we use depends upon what we want to achieve.

uction

 One way to reduce the impact is to erect some sort of organizational veneer
which makes a team’s contacts – its visibility to others – look the same irrespective of
changes internally. A hypothetical pattern for this might look something like:

Veneer pattern
Name: “Team veneer”

Problem: Need to provide an unchanging interface between teams even when the
internal organization of the team or the business processes it supports change.

Context: The team is subject to frequent changes of staff or staff responsibility or
business processes, or the business processes are not well defined and there is
considerable checking, expediting and decision making needed by individuals, or
both. Note that it is impossible to foresee when radical changes to business processes
will be needed, since these may be driven by competition, the economy, the stock
market or other difficult-to-predict forces

Success criteria: A team which, to those who work with it, appears unchanging and
predictable to work with.

Solution: Create formalised interfaces to the team – as seen from other teams and
from the outside (real customers, for example). These formalised interfaces might be
something as simple as a customer services ‘ordering point’, whose function is to
accept orders from internal customers (e.g. the sales-force) or real external customers

Buffering 30

in the same way; behind the scenes (i.e. within the team), these orders may be treated
differently but this difference should not be visible to internal or external customers.
The team operates on the ‘black-box’ principle as described in ‘From genes to
business’ in Chapter 4 of The Coevolving Organization

Rationale: The loss in efficiency caused by creating such black-box interfaces is
marginal when compared with the much larger gain in stability to the business as a
whole. Part of the business – whether one team or some larger organizational entity –
can be reorganized with no visible loss of performance to other groups in the business
which depend on it.
 This is a very high-level pattern. In reality, it is the template for some more
specific patterns for particular business processes. We might have patterns for:

‘team veneer – order acceptance’
‘team veneer – despatch’ (e.g. liaison with logistics)
‘team veneer – future stock availability’ (for example, liaison with
manufacturing for work in progress and with production planning for querying
or adjusting next week’s production)

In these examples, the salient point is the engineering of the person-to-person
interface such that if internal manufacturing were replaced by co-manufacture (by a
third party) or logistics were turned on its head by the outsourcing of depot
operations, each such area appears to other areas to be functioning exactly as before.
The same would apply to a pattern for logistics:

‘team veneer – logistics truck management’

where the design of the logistics team was such that the links between each sub-team:

 dispatch planning – the amount of stock to be shipped and when
 the allocation of stock to trucks
 stock picking
 truck loading

were ‘veneered’ such that any change to one was invisible to its internal customers
and suppliers. The sub-teams managing stock picking and truck loading operations
are suppliers (of dispatch services) to the stock allocation sub-team, who in turn are a
supplier of stock management and dispatch services to the dispatch planners, who
are, in turn, suppliers of overall dispatch services to customer services. Note that a
business’s products move one way (from manufacture to customer services to
logistics to customer) while the internal customer/suppliers ‘contracts’ usually work
the other way.

This example has been elaborated to demonstrate two points:

The Pattern Organization 31

 customer services, for example, should have no knowledge of – should actually
be unable to find out (!) – how the orders they send to dispatch planning are
allocated to stock, are loaded and subsequently sent to the customer. If they can
find out, they may start making assumptions (with the best of intentions…)
which will throw deliveries awry when a business process or organization
change occurs somewhere downstream in logistics.

 teams (objects) can be contained within others, like a nest of Russian dolls. And

so teams can be built up of sub-teams whose interfaces can also be veneered.
There is, of course, a point of diminishing returns when the sub-team is so
small, perhaps one individual, that it ceases to be sensible or economic to do so
or is too small to make decisions autonomously.

Unfortunately, although this veneer pattern gives some ideas on how to buffer one
area from another, it is too high level and unspecific to be of use. To remedy this we
need to use the object-oriented pattern ideas introduced from page 16 onwards.

Following are the five patterns which are the foundation for buffering and for solving
other related organization or process problems caused by over-tight coupling of teams
or business processes. Each pattern is useful in a specific situation.

 Adapter (decouples two areas by transforming one interface to another;
this is the fundamental ‘veneer’ pattern)

 Façade (loosely, a variation of Adaptor for an area with many interfaces)
 Mediator (converts a mesh-like organization or business process structure

into a star)
 Chain of responsibility (decouples requestor from responder when it

cannot be predicted which team or process will handle a request)
 Bridge (decouples variations in definitions – policies, process definitions

and the like – from their implementation)

These names are the ones used by IT system designers, and the IT versions of these
patterns are described by the Gang of Four. They will each be specified in the format
of a pattern using the object-orientated concepts previously introduced and described
using examples from real business organization or processes. The term ‘requester’ is
used to denote anyone from another team or from outside the business needing to
communicate with someone in the team; this communication could be a phone call,
email or business-to-business (i.e. system-to-system) electronic transaction. For each
pattern, a description of the pattern in object-orientated design language is included.
For those unfamiliar with object-orientated design conventions, the two main types of
‘arrow diagram’ which will be used are as follows:

Buffering 32

class

respondersub-class

requesterclass

respondersub-class

requester

Figure 2 - class and object diagrams

The shaded upward arrow displayed midway between two classes indicates that the
lower class (‘Electric locomotive’) is a subclass of the upper class (‘Locomotive’).
The solid black arrow displayed usually at the end of a line connecting two boxes
indicates that the item (class or object) at the arrowhead end is called by the other
item. This calling will normally create an instance of an object of the called-item
class.
 Although these patterns are likely to prove the most useful ones in practice,
they do not form a complete pattern language peculiar to certain types of organization
or business process problem. Much less do they form a comprehensive pattern pool
of all possible organizational patterns. They are intended to provide a foundation on
which users can build further patterns peculiar to specific organization or business
process circumstances. And, as with the edge of chaos, self-organization and highly-
optimized tolerance concepts and the NKCS mechanism, they provide a framework –
a language – with which to analyze and discuss organization and business process
issues.

The Pattern Organization 33

Adapter

Problem:
There is a need to change the structure of a team while letting requesters continue to
call in an established way – perhaps because there are so many of them.

Context:
The way in which requesters call cannot be changed, but we need to change the
structure of the team they call.

Success criteria:
Requesters call in the same way and do not realise that the structure of the team they
are calling has changed

Solution:
Create an interface which, to the requester, looks just like the established way to call.
The interface then maps the call to the new team structure, i.e. it converts the external
view of the team to the new internal structure

Requester

Incompatible
interface

Requester

adapter

Responder

Requester

Incompatible
interface

Requester

adapter

Responder

Figure 3 - Adaptor pattern diagram

Buffering 34

Object-orientated design notes
The diagram below shows two ways to use Adapter.
The first uses classes in which subclass ‘adapter’ inherits from two parent classes
‘virtual requestor’ and ‘responder’. As a result of this inheritance, Adapter has
definitions for both interfaces and can convert one to the other and perform the role
of responder (since it inherits responder’s operations as well as its interface).
The second way uses objects: subclass ‘adapter’ does not inherit the responder’s
function but instead simply calls responder using the correct interface.

‘virtual responder’
responder

requester

‘virtual responder’

adapter

responder
requester

Class adapter

Object adapter

adapter

‘virtual responder’
responder

requester

‘virtual responder’

adapter

responder
requester

Class adapter

Object adapter

adapter

Figure 4 - Adaptor pattern OMT

OMT is Object Modelling Technique – see page 65

The Pattern Organization 35

Façade

Problem:
Requesters are finding it difficult to get in touch with the appropriate responder in the
team

Context:
The team has many different contact points for internal and external requesters. Most
requesters have a standard request and relatively few have specialised requests.

Success criteria:
Low level of redirected calls

Solution:
Create a standard interface for ‘normal’ calls. The sub-teams behind this interface are
not regrouped into a new team but remain in their own sub-teams because this is
otherwise the most autonomous way to split the team.

Requesters

Responders

Facade

Responders

Requesters

Responders

Facade

Responders

Facade

Responders

Figure 5 - Facade pattern diagram

Buffering 36

Object-orientated design notes
The diagram below shows how to use Façade.

requestor facade

target1

target2

target3

requestor facade

target1

target2

target3

Figure 6 - Facade pattern OMT

Façade is implemented with classes (note that the targets are not subclasses of
Façade). For simplicity, only three of the six targets are shown in the diagram.

The Pattern Organization 37

Mediator

Problem:
Team communication is over-complex even though individual teams communicate
with others in a simple way

Context:
Teams in all or part of the business communicate with each other in a simple and
logical way (i.e. the team groups are the most autonomous possible), but the overall
network is complex, i.e. is a mesh rather then a hierarchy or sequence of the type
A=>B; B=>C.

Success criteria:
Neither communications nor requests for decisions go round in circles.

Solution:
Create a central point (sub-team or electronic equivalent) through which all
communications between these teams are directed. Communications circles can be
detected and prevented. This converts a mesh into a ‘star’.

MediatorMediator

Figure 7 - Mediator pattern diagram

Buffering 38

Object-orientated design notes
The diagram below shows how to use Mediator. As before, only some of the targets
are shown.

abstract
mediator

target1

target2

target3

concrete
mediator

abstract
target

abstract
mediator

target1

target2

target3

concrete
mediator

abstract
target

Figure 8 - Mediator pattern OMT

The Pattern Organization 39

Chain of responsibility

Problem:
If the requester’s request is arcane and the number of specialities handled by the team
is large, it may be difficult for a central point to decide where the request should be
handled.

Context:
Large teams with many specialities where requesters generally do not know who to
contact. A façade (above) can handle common calls but lets those needing specialist
support communicate with the specialists directly. This, however, assumes that the
requester knows which specialist will handle the request.
Requesters are emails and business transactions rather than human requesters.

Success criteria:
The requester is unaware that the call is being passed from specialist to less specialist
sub-teams.

Solution:
Requesters are passed initially to a specialist sub-team which might be able to resolve
the call. If they cannot, the call is passed to a less specialist sub-team, and so on until
a general ‘catch-all’ sub-team fields the call.
In the example below, a requester makes a request without knowing who would
handle it. If team Responder 1 is unable to handle it, the request is passed to
Responder 2 and so on – without reference to the requester who has no idea (and
cannot find out) who will handle the request.

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Figure 9 - Chain of responsibility diagram

Buffering 40

Typically (not shown) there would be an additional ‘request handler’ operation which
enabled a request to be passed on to the next responder in the chain.

The Pattern Organization 41

Object-orientated design notes
The diagram below shows how to use Chain-of-responsibility. As before, not all the
targets are shown.

abstract target

target1

requestor

target2

target3

get successorabstract target

target1

requestor

target2

target3

get successor

Figure 10 - Chain of responsibility OMT

The various targets – the classes which, for example, undertake progressively less
specialised ‘help-desk’ functions – are all subclasses of ‘abstract target’. The ‘get
successor’ internal request allows any target to request that its successor is invoked.

Buffering 42

Bridge

Problem:
Adding a new business process results in an explosion of country-specific
implementations.

Context:
Corporate manuals exist on how each department must be structured and which
processes it must follow. Departments structured along these lines exist in each
country in which the business trades. Additions and (occasionally) deletions to the
corporate manual occur regularly.

Success criteria:
Additions and deletions to the processes within the corporate manual can be
implemented in each country without a ‘combinatorial explosion’ of variations.

Solution:
Instead of each country-specific team having manuals derived from the main
corporate manual detailing each process as it applies in that country, the corporate
manual and country-specific implementations are decoupled as in the example below.
The first diagram shows what happens when the definitions (classes) are not
decoupled from the country-specific implementations. The descriptions of approved
training methods, company personnel grading principles and – to be newly added –
company career planning guidelines are intermixed with the country-specific
implementations of those policies. When HR develops a new speciality, succession
planning for example, or moves into a new country, the number of implementations
explodes; for example, for a (conservative) five policy areas to be implemented in
twelve countries, there are sixty implementations. The fault is that we have failed to
distinguish between the policy definitions (which are not country-specific) and the
implementations (which are).
 The second diagram shows the simplification which results from separating the
two. It is worth clarifying why this separation is so successful. What we have actually
done is to separate and ring-fence the two types of variation: additional policies and
additional countries are not related.

The Pattern Organization 43

definitions

implementations

career
planning

UK UK

grading
principles

training

US

etc

US

UK

etc

US

etc

HR
manual

definitions

implementations

career
planning

UK UK

grading
principles

training

US

etc

US

UK

etc

US

etc

HR
manual

Figure 11 - Bridge pattern 'before' diagram

training career
planning

Create country manual

definitions

implementations

grading
principles

HR manual

UK US etc

trainingtraining career
planning

Create country manual

definitions

implementations

grading
principles
grading
principles

HR manualHR manual

UKUK USUS etcetc

Figure 12 - Bridge pattern 'after' diagram

Buffering 44

Object-orientated design notes
The diagram below shows how to use Bridge.

b r i d g e

concrete
definition

abstract implementation

concrete implementation 1

concrete implementation 2

concrete implementation 3
concrete
definition

concrete
definition

abstract
definition

concrete implementation 4

b r i d g e

concrete
definition

abstract implementation

concrete implementation 1

concrete implementation 2

concrete implementation 3
concrete
definition

concrete
definition

abstract
definition

concrete implementation 4

Figure 13 - Bridge pattern OMT

The symbol is described on page 65.

Deploying buffers
We said earlier that these five patterns are not the only ones which can be used for
describing organization structures and not even the only ones which might be
employed as buffer patterns, but they are the most useful ones. So exactly where do
we deploy them? We could conceivably buffer every business process and its
supporting organisation. But buffering has a cost:

 business processes would need additional bridge processes (buffers)
between them instead of one process feeding seamlessly to the next

 it may need more staff. A team ‘fine-tuned’ to operate one process or a set

of processes may need extra staff to handle the buffer itself. For example, a
customer services team which was set up to handle orders only from the
sales force may need disproportionately more people if it is to handle
orders from retail customers or wholesalers or via electronic data
interchange as well in a transparent way and maintain the same quality of
service. In other words, setting up the organization and processes to handle

The Pattern Organization 45

any source of order may cost more than creating dedicated teams to handle
each type or order.

Since buffers are only of value if the processes or organization change, it sounds
sensible to use them to ring-fence processes or teams which are more likely to change
and to leave other more static areas alone. This, to readers of The Robust
Organization at least, should look suspiciously like Highly Optimized Tolerance…

The Pattern Organization 47

CHAPTER 5

BUFFER PLACEMENT

T
Introduc

he previous chapter described the most common types of buffer pattern. It
concluded by noting that inserting buffers between processes and between
organizational groups such as small teams had a cost: the buffers were

themselves additional (but small) processes which may introduce some inefficiency,
and the resulting structure may need more staff. We thus need some rules to
determine where it is cost effective to insert buffers and where it is not. More
precisely, we want a way to specify where buffers should be placed based on an
analysis of risk – what the likelihood is of a process or team being affected by any
change which would result in its interfaces to other processes or teams altering
significantly. This is exactly the type of problem Highly Optimized Tolerance
addresses.

tion

Highly Optimized Tolerance (HOT)
HOT is described at length in The Robust Organization. What follows is a brief
summary which uses the same forest fire example.
 Most forests which are left in their wild state – not managed in any way – will
occasionally experience forest fires. These fires burn until either a natural firebreak is
encountered (perhaps an area left fallow by a previous fire) or the forest is totally
gutted. Trees re-grow more or less at random through self-seeding from the
remaining trees. Other things being equal, a forest which is densely wooded is more
likely to experience a large fire, one covering a wide area, than a forest which is
sparsely wooded because the fire in the dense forest can jump easily from tree to tree
with no gaps to hinder it. There is thus a balance between the tree density and impact
of a spark: the more trees in any one area, the more likely it is that a spark will have a
widespread impact.
 Forests used for commercial lumbering on the other hand have firebreaks
deliberately constructed. Firebreaks have a cost, not just of initially felling trees and
subsequently keeping the firebreak clear but in lost revenue: each firebreak means
fewer trees to harvest. The forest manager thus needs to balance the commercial yield
from the forest – the cost of creating and maintaining the firebreak plus the lost
revenue from keeping areas fallow when they could contain valuable trees – with the
revenue loss resulting from a fire if one took place. If sparks were equally likely to
occur in any area of the forest and this likelihood were known, the positioning of
firebreaks is relatively easy to calculate. A square forest would have a rectangular
grid of firebreaks looking something like that shown in the diagram below. The light
areas are parts where there are no trees, either because there is a firebreak or because
a tree has yet to grow there (perhaps it was burned down in a previous fire and its site
has not yet been reseeded).

Buffer placement 48

 This diagram shows a forest

where sparks are equally likely to
happen anywhere. There is no
guarantee that if a spark occurs, a
fire will inexorably follow; the
spark may hit a vacant site or
even a firebreak.

However, if sparks are
concentrated in particular areas of
the forest (i.e. the distribution of
sparks is not random), then it is
clearly better value for money to
place firebreaks closer together in
those areas where fires are more
likely to start and to space them
widely elsewhere. For example,
assume that there is a picnic site

at the centre of the forest and that sparks from careless picnickers are thus more likely
in the neighbourhood of the centre than elsewhere. The optimum spacing of straight-
line firebreaks would then look something like that shown below, although there are

other ways to construct firebreaks
which are not straight lines. In this
diagram, the centre of the forest is
closely ring-fenced by firebreaks.
A fire breaking out there cannot
spread very far. The corners of the
forest, on the other hand, have
been assumed to be areas where
sparks are relatively unlikely to
occur. Creating firebreaks in this
way maximizes the yield for a
particular distribution (likelihood
pattern) of sparks.

Figure 14 - HOT with a. equal and b.
centred probability of sparks

However, if a spark hits one of the corner areas – which is possible but much less
likely than one hitting the central area, the damage is much greater since there is more
forest to burn between the wider-spaced firebreaks than in the centre.

The Pattern Organization 49

More generally, HOT has three characteristics:

 design is used to apply a resource (firebreak) such that the overall yield is
maximized (which is normally the same as minimising losses). The resource is
either limited or has a cost associated with it which offsets the value of the
yield: applying too much resource can reduce the yield

 the resource reduces the total losses sustained as a result of some external event

(spark). These losses may be caused by a chain reaction of the initial event (an
external spark ignites a tree) causing other events (fire spreading to
neighbours)

 the external events happen with some known probability distribution (some

areas of the forest may be more likely to receive an external spark than others)

One consequence is that the greater yield (average tree density) renders the forest
more vulnerable to unanticipated (rare) external events. But the HOT forest is also
the most robust for the particular amount of resource deployed. And ‘robustness’ here
is simply a measure of how stable the yield is in the face of anticipated risks.

Buffer placement
This robustness is exactly what we are seeking for deployment of process or
organizational buffers. Simplistically, we can:

 identify the major areas within the business which have historically been most
subject to change, or which, with knowledge of the business’s own strategy and
what is happening to competitors, will be most likely to change

 within each such area, rank the business processes or organizational groups in

order of likelihood of change

 define suitable buffer patterns for each business process or organizational group

 evaluate the cost of implementing and operating each buffer and estimate the
cost of disruption if the typical changes actually occur

 implement buffers for those business process or organization groups for which

they are cost effective

Anyone familiar with HOT may detect two subtle differences between HOT’s
formulation and what is proposed here. HOT uses the likelihood of an external event
such as a spark occurring (which may or may not have consequences such a fire)
whereas we have ignored any root cause of change and simply estimated the
likelihood of the change happening. In addition, HOT tries to position barriers such
that the overall yield is maximized, whereas in this example we are notching up
benefits area by area. In our context, fortunately, these differences are irrelevant.

Buffer placement 50

The Pattern Organization 51

CHAPTER 6

FROM IT TO ORGANIZATION

T
Introduc

he use of patterns and decomposition in object-orientated design and
programming has been plumbed in depth since 1995. The converse – the use
of ideas developed for systems architecture for designing organisations – is,

however, an almost virgin field. In answer to the unspoken ‘why bother’, it is worth
noting that computer operating systems such as Windows XP and their related
network technology are arguably the most complex artefacts ever designed.
Reproduction and natural selection together have certainly created more complex
living forms, but computers and networks are designed. Most of the problems faced
by those who are redesigning the structures of their businesses have already been
faced, generally successfully, by IT practitioners.

tion

 IT practitioners also learned one lesson many years ago: to avoid monolithic
(all in one piece) systems, and this applies to business application systems as well as
computer operating systems. Since the message of this book and its predecessors is
decentralization, or at least the avoidance of over-centralization, it is worth looking at
what was wrong with the original monolithic systems.

There were four fundamental issues:

 size
 multifaceted nature
 impact of failure
 complexity

And to make life more difficult, these were found to be interrelated.

Size on its own is not inherently a problem. Designing large things just takes longer
or needs more designers than small things. But the science, or rather art, of estimating
how long a new operating system would take to build and test is embryonic. IBM
faced this on a grand scale when it tried to design from scratch an operating system
for a complete range of computers suitable for anything from a tiny office to the
largest corporation or science research establishment. The initial result, OS/360,
eventually worked and derivatives are still in use today, but the delays were severely
embarrassing to the world’s then largest computer manufacturer, the cost overruns
were frightening, and the product was highly unreliable at the outset.
 It was found that there were simply not enough technical and project
management people available anywhere with the right level of experience. Designing
and writing a computer operating system is not like designing and building the
steelwork shell of a skyscraper, where one floor is very much like the one below and
design and construction are largely sequential and repetitive. Once engineers and

From IT to Organization 52

construction staff have designed or built one floor, they simply do the same thing one
floor up. In other areas, working in parallel to speed things up is possible. Railways,
for example, are built this way, but perhaps the best and most relevant example is the
creation of mathematical tables before computers were invented. The world of tables
has largely disappeared, but at one time they were indispensable for tradesmen,
builders, designers, actuaries, bankers and, most notably, navigators to whom
accurate astronomical tables were essential. A mathematician would devise a formula
and break the evaluation of it into simple discrete steps. He or she (almost always a
‘he’) would then calculate some ‘pivotal’ values – the formula evaluated at well-
spaced intervals (‘every 100’, say). Filling in the gaps would be farmed out to people
known as ‘computers’ who would undertake the very large number of simple and
tediously repetitive calculations necessary either by hand or using a simple
mechanical calculator. Calculations would normally be done in duplicate by different
people and the results cross-checked. Until the final printing, therefore, when results
were collated, it was possible to calculate the values needed for large tables quite
quickly using lots of human ‘computers’ working in parallel. Writing the programs
which comprise a computer operating system like OS/360 is a totally different
process. In general, each piece is different in nature from each other part; very little is
repetitive. It is multifaceted, and this makes design and writing take a lot longer as
there are no economies of scale.

Complexity
OS/360 was, for its time, large and multifaceted, but it was also complex. Much of it
was one large chunk of programming. This was customised on first installation to suit
the computer and devices connected to it, but the result ran as one piece. This meant
that failure in any one line of programming could bring down the entire system rather
than just abort the function being undertaken. For example, a fault in the part of the
system which dealt with sending lines of print to a printer could abort not just
printing but everything else as well. It was only much later (with MVS – loosely a
grandchild generation of OS/360) that each major part of the system was isolated
such that any failure there would be dealt with by failure management programs
written specifically to cope with failures in that area. As far as is known, the
additional lessons from the development of Highly Optimized Tolerance to ring-fence
areas during design to a degree proportionate to the likelihood of a failure has not yet
been incorporated into any computer operating system, although Microsoft are aware
of it. The source of the complexity was only realised later: although the very many
programs which comprise OS/360 were designed to link to each other (where
necessary) via formally-documented interfaces which specified what information
would be passed from the caller to the program being called, little or no effort had
been made to design things such that the caller was prohibited from finding out what
the program being called actually did; it could and often did peek into the called
program’s private information or make assumptions about how it worked or both.
This was bad practice at design time but often fatal when changes were made to the
called program. These unofficial ‘cross-connections’ between programs could lead to
knock-on effects when the called program then called yet another one. These side-
effects are a hallmark of complexity: instead of a simple controllable hierarchy where

The Pattern Organization 53

program A calls program B to do something on its behalf without knowing – without
being able to know – how it does it, we have a skein of cross-connections whose
results are unpredictable.
 Large multifaceted systems, particularly computer operating systems and
networks, use precisely-specified interfaces between their thousands of constituent
parts. Furthermore, these interfaces are ‘layered’ in the sense that program A links to
program C via program B and has no idea how to talk directly to program C or how
program B does so. Neither does A know how B or C work. Networking and
especially router technology was touched on in The Coevolving Organization. It is a
fertile source of the best examples of layering (the OSI seven-layer model, for
example) but also contains something more subtle which as far as is known has not
been covered elsewhere before: the dynamic (time-based) nature of interaction
between objects when they are constrained. For example, if objects W, X and Y are
each coupled to object Z and are interacting with it, Z may be unable to respond to Y
because it is too busy responding to W and X which either got in first or are of higher
priority. This has close parallels with how traffic is managed over constrained
communications links where data packets are expedited, re-prioritised, delayed and
sometimes deliberately dropped.

Network routing
Data traffic from one site to another is sent and received using items of equipment
called ‘routers’. Routers can if necessary pass data packets from point to point over
many individual links until they reach their eventual destination. They handle
transient errors and reroute traffic if a link fails. Routers need to exchange
information on how to get from A to B when several links are involved (for example,
A to X; X to Y; Y to Z and finally Z to B). If an individual link fails, routers directly
connected to it pass the word on to other routers (“avoid link X to Y – it is faulty; try
another way around”). Since this exchange of information between routers is itself
data traffic and may take some time to percolate around a large network, it is possible
that the failing link may right itself again before the information about its failure had
arrived at the farthest reaches of the network. There will then be contradictory
messages (“link X to Y is faulty” and “link X to Y is OK”) circulating at the same
time which, in a mesh (any to any) network can cause a storm of conflicting
information to fly between routers.
 The Coevolving Organization described a fundamental problem faced by all
network designers: whether to split a network into autonomous chunks so that such
‘broadcast storms’ can be contained within their chunk of the network (which then
makes the network of limited use to those who want worldwide communication) or to
stay with a single network and risk such disasters which have a high impact but are
relatively rare. It also described the usual compromise: to create freestanding areas
and then link them together at one or two points on the boundaries that separate them.
The routers in area A would then contain a map of the links in area A alone. Any
links in another area B would be invisible from within A. All that a router in A needs
to know is that any packet of data addressed to a destination somewhere in B has to
be forwarded to a special router on area A’s boundary. This boundary router would

From IT to Organization 54

then take responsibility for sending it to its opposite number in B that would be fully
up to date with what routes in B led where.
 Some communication of network information across the areas has to occur. If
not, a router in A would not know which destinations lay in B. But information about
what links lead where in B and which ones were currently operational stays confined
to B. Routers in area A will discuss link availability with each other. Routers in B
will do likewise. But this will not happen between a router in A and a router in B. A
big failure in one area will have limited impact on another area. Both data and the
information about link availability can flow uninterrupted around A even when B is
struggling.
 Since this looks like a good solution, it raises the question of whether we
should create more areas like the creation of the progressively smaller and more
numerous cells used by mobile phones in urban areas where the density of phones is
high. This, however, introduces problems of its own. The fewer the points of
interconnection between A and B the greater the dependence on the availability of the
boundary routers (and the links between them) that look after all communication
between A and B. What we have gained in resilience within each area we have lost in
the connections between areas. In coevolution terms, the areas are objects. The links
between boundary routers give the C-coupling between areas. The (average) number
of links between routers in any one area gives K. The effects of a temporary technical
problem – perhaps information about a link failure – which occurs in a high-K area
reverberates around the whole area in an unpredictable way. If the routers in an area
are connected in a hierarchy or in the extreme case a simple low-K star with each link
connected directly to the boundary router, this impact of network failures is confined.
But now the system has become more vulnerable to a failure at the centre of the star.
Managing a star network is easier than managing a mesh. Such a network is very
resilient to failure outside the centre but a failure at the centre itself can have a
catastrophic impact.

The Internet
Throughout the 1990s, the Internet appeared to be an archetypal example of a system
which had evolved ‘naturally’ like a biological system in response to user demand
rather than having been formally designed. Voluminous data on its physical structure
and performance are available and these data show the ‘power-law’ signatures of self-
organization (see The Coevolving Organization). But although the Internet has no
central control and the traffic patterns may appear to adapt automatically to
congestion or failure of a link without intervention by the user or even by the
communications link supplier, it now appears likely that this power-law behaviour is
a consequence of the vast amount of design for both performance and resilience
which has gone into the Internet’s TCP and IP communications protocols and their
physical implementation in routers and is not a natural consequence of the self-
evolution of the Internet. In other words, the Internet’s apparent self-organized
behaviour is a consequence instead of network designers attempting to optimize link
usage while minimising congestion and minimising the impact of failures on the
Internet as a whole. Inevitably, these designers tried to ensure that the impacts of

The Pattern Organization 55

outages at the most likely points of failure were contained. So instead of being a self-
organized system, the Internet looks like an example of HOT.
 Private communications networks and the Internet are thus both examples of
designed systems rather than ones which ‘just growed like Topsy’. As noted above,
the structure of both private networks and the Internet will have areas where the
routers at each site know of the existence of each other site and how to contact them
directly but outside which communication is only possible via intermediary
‘boundary’ routers. And if the design is done well, the sizing and positioning of these
‘autonomous networks’ and the way in which they are coupled using boundary
routers would have been done only after careful evaluation of the likelihood of failure
at different points in the network and the impact of such as failure on the entire
network. The designer would attempt to minimize the network-wide effect of likely
failures subject to the constraint that having too many small autonomous networks
can reduce the reliability of the network. This is a result of traffic between areas
travelling via a few critical boundary routers and their associated links. Furthermore,
resilience is reduced because there are fewer ways for traffic between areas to be
rerouted.

Business processes
This same principle can be applied when structuring business processes and their
associated organizational groups. Breaking the processes into many discrete areas
which are buffered using one of the buffer patterns described earlier can make
transaction flow between processes highly dependent on the availability and
performance of the buffers themselves. Too many buffers can thus unintentionally
create artificial points of congestion and failure. Too few – particularly at the points
where change is most likely – subjects the organization to the internal chaos which
buffering was intended to obviate.
 The Coevolving Organization described what happens in a real organization –
a collection of general practitioners’ (family doctors’) practices – when the normally
independent practices combined their power to buy services from a particular
hospital. If, when the practices were separate, practice A pushed hospital X to drop its
costs for a particular surgical procedure and practice B did the same but not at the
same time, the hospital may find different ways to make the economies demanded by
each practice. It has time to react to the first demand before responding to the second.
Its link (C-coupling) back to practice A may result, for example, in an increase in
costs for practice A elsewhere in its budget, like the boxer riding a punch and coming
forward again. But when practices combine their C-couplings, the result is similar to
the effect on a boxer being hit by several punches at the same time and in the same
place. Merely adding C-couplings together may well understate the resulting impact
on the recipient because the couplings now act in a coordinated way and make the
same demands, volume discount for example, at the same time. This co-ordination
comes via the C-couplings between the practices. So the net impact of links between
areas can be more complex than is at first apparent. The impact of a C-coupling
‘push’ from two or more ‘attacking’ objects to a target object depends on the time
lapse between the respective pushes. It is greatest when impacts coordinated by C-

From IT to Organization 56

couplings between the attacking objects enable pressure to be applied to the target
object at the same time.
 But what of the reactions of the target object – the hospital in the preceding
example? The simplistic assumption is that it will react to simultaneous impacts from
C-coupled ‘attackers’ additively (just add up the individual impacts). But real target
objects are not that simple. The hospital will have limited capability to respond if
fifty local general practitioner groups all ask for different priorities or service
discounts at the same time. If for no other reason, the hospital’s accountants and
service delivery managers will be unable to respond to all the requests at once
because they themselves form a bottleneck. Communications network designers are
familiar with this very problem – data packets arriving internally at a site’s router for
delivery to another site do not normally arrive at a predicable steady rate. Instead,
they arrive in bursts which contain data from different users working independently.
There is fortunately no person-to-person C-coupling, or the impact if everyone
conspired to send large quantities of data at the same time would be a solid traffic
jam. Nevertheless, the traffic is targeted at a device (the router) which is the gateway
to a communications link with a restricted capacity. In such circumstances, the
router’s job is to prioritise, delay and sometimes even drop data packets such that the
link capacity is used to best effect.

Programs and teams
The Coevolving Organization called each organization entity, a department for
example, an object, although the reason may not have been apparent at the time. Let
us equate each such organization object with a computer program which is part of,
say, a computer operating system. If an object (customer services, say) makes
assumptions about how another object (logistics, say) which is its ‘internal service
supplier’ (the supplier of warehousing and delivery services to customer services)
will fulfil its ‘supplier’ contract, then any change in the logistics organization can
have a knock-on effect on customer services, irrespective of the formal business
processes they both adhere to. The same is true if logistics makes some assumptions
about orders sent to it by customer services for delivery. Perhaps customer services
had been in the (laudable) habit of checking that manufacturing had sufficient work
in progress which will result in enough manufactured stock being available for a
delivery next week. If customer services cease doing this, perhaps because the
individual concerned moves to another role or because the team is reorganized,
logistics will suddenly find they have stock shortfalls for no apparent reason.
 If computer programs can be equated to organizational entities – objects,
what is the equivalent of the business processes that the organization (i.e. the
supporting teams) tries to correspond to? The short answer is that programs also
correspond to business processes. (Note that we are not necessarily talking about the
programs, perhaps part of applications systems such as SAP AG’s R/3, which are
used to automate the business processes.) This imprecision arises from the fact that a
high-level business process is built up from smaller processes, and that supporting
staff may be organized into teams which cover sub-processes within the high level
process, or alternatively more than one process – as illustrated in the diagram which
follows:

The Pattern Organization 57

Business process Business process

TEAM C

Larger business process (e.g. order to cash)

TEAM A

Business process

TEAM B

Business process Business process

TEAM D

Business process Business process

TEAM C

Larger business process (e.g. order to cash)

TEAM A

Business process

TEAM B

Business process Business process

TEAM D

And how do we define where the boundaries of either the business processes or the
supporting teams should be? By:

 identifying what are the smallest units which are most autonomous, i.e. most
independent of their peers. They are only connected to their parent in the
hierarchy which is either an organization parent (a site asset management
accounting team’s being part of the country Finance organization) or a business
process parent.

 identifying where likely changes will occur, either in business process or in

organization (there may be tentative plans to outsource IT Service Delivery for
example)

When we know the boundaries, we use HOT principles to insert buffers where they
are most cost effective.

The Pattern Organization 59

CHAPTER 8

REFERENCE MATERIAL

Patterns and wholeness
 Chris Alexander (references 4, 5 and 6) was the first to give an analytical
exposition of why buildings and collections of buildings “don’t work” – why they
often do not function as intended and why they are unpleasant to inhabit. His starting
point was to analyse how abstract ‘things’ – which may be supporting or conflicting –
interact, and how misfits between these ‘things’ and their environment can be
minimized. Alexander’s work spawned considerable interest from other areas,
notably object-orientated software design (see The Coevolving Organization Annex –
Information Technology). Appendix 2 of reference 4 contains the proof of a highly
relevant theorem: “given a system of binary stochastic variables, some of them pair-
wise dependent, which satisfy certain conditions, how should this system be
decomposed into a set of subsystems such that the information transfer between the
subsystems is a minimum”. The significance of this to designing an organization
should be readily apparent to readers of The Coevolving Organization (see Chapter 4
– How big should an object be?): one design criterion for selecting coevolving
objects is that they naturally communicate between themselves as little as possible
(i.e. communication needed by business processes is primarily within objects). If this
is not true, the carving up of the business into objects has been done wrongly and
there is a better way to do so which concentrates communication within objects and
reduces it between objects. One can (loosely…) apply the formulation of HOT PLR
(see The Robust Organization): if we have a fixed maximum number of barriers
between business areas, we want to place the barriers such that the communication
between areas (i.e. across the barriers) is minimized relative to any other way of
placing barriers. Alexander introduced the idea of ‘patterns’ (in reference 5a) which
can be used at a local (decentralized) level to create structures – which in our case are
the internal processes of organization units – each of which has the most appropriate
fit for its purpose.
 Alexander’s best-known work (reference 5b) describes 253 patterns which
could be used to create building and spaces which are ‘alive’ – meaning that they
fulfil their function but more importantly that the inhabitants ‘feel at home’ in them,
something difficult to quantify but very real to the inhabitants themselves. This book
is one of a three-part series. The first (5a) describes the origins of patterns, pattern
languages and pattern pools and is the best place to start – particularly for those who
aren’t architects but are fascinated by Alexander’s ideas. The third book in the series
(reference 5c) covers in great detail the implementation of Alexander’s ideas in a
large-scale design process for the University of Oregon. Alexander’s later series of
four books (references 6a though 6d) takes things much further. The first (6a) revisits
the need for a successful building to be ‘alive’. It characterises this ‘life’ as the way
in which certain features of buildings have an innate connection to human feelings.
Alexander proposes that this life is the result of using up to fifteen basic geometrical

Reference material 60

forms to create the ‘wholeness’ of a structure. This, in turn, engenders the subjective
feeling that these structures are ‘right’. In other words, what makes good architecture
– architecture which people feel ‘easy’ with – is amenable to analysis. In Alexander’s
words (page 236), “Systems…which have these fifteen properties to a strong degree
will be alive, and the more these properties are present, the more the systems which
contain them will be alive”. The second book (6b) builds on the first and
demonstrates how simple evolutionary processes resembling natural growth –
‘structure-preserving transformations’ – can be applied to these forms to create new
structures or to flesh out and enhance existing structures. These transformations are,
in fact, ‘active’ versions of the geometric forms themselves. In other words, each
geometric form is used bootstrap fashion to grow itself and to assist the growth of
other forms. The bootstrapping process is applied across the embryonic structure in a
ten-step iterative sequence which enables the burgeoning forms to evolve with their
neighbours in a coherent way such that the ‘wholeness’ of the structure, and hence its
effect on the feelings of its inhabitants, is preserved and enhanced. The third volume
(6c), which has not yet been published, describes a large number of ‘living’ buildings
and spaces designed by Alexander and others. The final book (6d) is a deep and often
mystic reflection on the more fundamental issues of consciousness, the nature of self
and, above all else, wholeness – the indivisibility of self from the outside world.
Alexander summarised the relationship between his Nature of Order and current
complexity theory in reference 8.
Object orientated design
The Gang of Four’s ‘bible’ (reference 1) is the standard textbook on patterns for
object-orientated design. Like Alexander’s Notes, it started life as joint-author Erich
Gamma’s PhD thesis. It contains 23 patterns grouped into 5 creational patterns, 7
structural patterns and 11 behavioural patterns. A few (such as Adaptor) apply mainly
to classes but most apply to objects. The difference between the two is roughly the
difference between a design handbook or blueprint (which, after design is complete,
are fixed) and real-life operation where objects can invoke the services of other
objects in a dynamic and unpredictable fashion.

 Class-type pattern Object-type pattern

Creational Create objects using
subclasses

Create objects by using the services
of other objects (none of the five
buffer patterns are in this category)

Structural

Compose classes
using inheritance
(Adaptor1 is an
example)

Define ways to assemble objects
(Adaptor, Bridge and Façade are
examples)

Behavioural
Define flow of
control or a process
using inheritance

Describe how several objects work
together to perform a task which no
single object can perform (Chain of
Responsibility and Mediator are
examples)

1 Adaptor appears twice in this table as it can be used as a class pattern and as an object pattern – as
illustrated on page 34

The Pattern Organization 61

Those without an IT background or unfamiliar with object-orientated programming
and the box-and-line diagrams of Object Modelling Technique (OMT)2 used earlier
to illustrate the class and object relationships for the five buffer patters may find
reference 1 hard going. If so, reference 2 provides a slower-paced introduction which
explains how using patterns can solve some of the problems (such as huge inheritance
trees) caused by using object-orientated design slavishly.

2 or its successor Unified Modelling Language (UML). We have used OMT for consistency with the
Gang of Four’s “Design Patterns”

Questions and Answers 62

CHAPTER 9

QUESTIONS AND ANSWERS

Q: You showed earlier that there were two steps to creating good organization
groups. The first simply minimized interaction between each team and other teams
(following Alexander). The second permitted some artificial organization design
constructs – façades and the like (following the Gang of Four) – whose aim was to
minimize further the knock-on effects of changes within teams. This sounds
somewhat familiar…

A: It should not have escaped readers of The Coevolving Organization and The
Robust Organization that there is a strong analogy between:

 ‘edge of chaos’ – the optimal point to which to decentralize if we are
restricted to using simple more-or-less random changes within an
organization, and

 Alexander-like simple minimization of interactions between teams

and also between:

 ‘highly optimized tolerance’ which allows the edge of chaos point to move
further in the direction of chaos (and thus be more optimal) if we are
allowed the freedom to impose artificial designs on the organization, and

 the object-orientated artificial organization constructs

In other words, if we know roughly how an organization reacts (via its business
processes) to changes, whether external (attacks from a competitor, for example) or
internal, and in the light of this knowledge apply deliberate design to how processes
and the teams running them interact, the more successfully it can operate its linked
series of business processes without major disruption when a foreseeable change
occurs to the business processes. We would identify areas of likely variability in
advance and create façades and bridges to buffer processes from each other. This
does, of course, leave the business exposed to unlikely changes. The buffers are
equivalent to the HOT firebreaks which are placed to isolate areas most likely to be
hit by a spark at the expense of other areas where sparks are much less likely. In
business process terms, stable areas – ones less likely to suffer radical process change
– are left unbuffered. This makes the effect of an unanticipated change greater
because the business processes remain tightly coupled and the knock on effect of a
change is more far reaching.

The Pattern Organization 63

Q: I’m an architect and I don’t fully buy your argument about splitting things into
pieces which are as autonomous as possible. This is how urban planning worked
twenty years ago – and to some extent still does – creating isolated groups of houses
and shops connected by major roads. Superficially fine and ‘clean’ on a design plan,
except that people don’t live in this artificially segregated way.

A: Correct. And this is also true of how people actually work in organizations, where
the patterns of communication and, in larger offices and campuses, the patterns of
people movement are a complex set of overlapped semi-autonomous groups. Some
groups are, indeed, driven by business processes and the organization structure
supporting them (i.e. the ‘official’ family tree). Other overlapping groups emerge
from cross-area task forces, matrix management and social ties. Instead of a tree
structure, the result is a ‘semi-lattice’ – a tree in which each leaf can be attached to
more than one twig, and each twig to more than one branch and so on. Alexander
highlighted this in a paper (reference 7) which was shunned by the ‘keep it clean and
simple’ urban planners who felt it spoiled their elegant but unworldly designs.

‘Official’ autonomous business-
process based groupings

Informal social groupings at work‘Official’ autonomous business-
process based groupings

Informal social groupings at work

Figure 15 - Trees and semi-lattices

Q: You said that different objects can have identical interfaces but are entitled to act
differently in response to identical requests. But you also highlighted the similarity
between the collection of requests which can be presented to an object and a Pattern
Language. Does this mean that different patterns mean different things to different
people?

Questions and Answers 64

A: We said earlier that the collection of all valid requests to an object is called its
interface. The different formats of requests are called ‘signatures’, so an interface is a
collection of signatures. Signatures may naturally group into subsets. To use the
example of drill-instruction, “Quick march”, “Squad halt”, “Left turn” “Right dress”
“Change direction right – right wheel” and so on are a collection of marching-related
drill tasks. Let us call this group of tasks ‘March-type’. There may be another which
is only relevant to the armed infantry called ‘Arms-type’ (such as “Present arms”;
“Slope arms”). A squad of infantry will respond to both March-type and Arms-type
commands (its ‘interface’ will consist of ‘signatures’ of the March-type and of the
Arms-type.). On the other hand, British cavalry, who are the most reactionary
element of the British army and in 1914 were still using horses and lances3, would
respond to commands of “Gallop”, “Quit and cross stirrups” and the like, commands
meaningless to any other group of soldiers. Each group of related signatures (related
commands) is called a type. The same type can be used by different objects, and each
different object is entitled to respond in own way.

Infantry
interface

Quick march

Halt

Left wheel

March-type

Present arms

Slope arms

Arms-type

Gallop

Cross stirrups

Horse-type

Cavalry
interface

Infantry
interface

Quick march

Halt

Left wheel

March-type

Present arms

Slope arms

Arms-type

Gallop

Cross stirrups

Horse-type

Cavalry
interface

Figure 16 - Military commands form a language

A more precise comparison with Alexander’s pattern language concepts is that the
collection of all commands for all armies is similar to a pattern pool. Each command

3 the last British lance-versus-lance attack occurred on the 7th September 1914 when Lieut. Col. David
Campbell charged with two troops of "B" Squadron of the 9th Queen’s Royal Lancers and overthrew a
Squadron of the German 1st Guard Dragoons. The 9th, who were founded in 1751, did not give up horses
in favour of light tanks until 1936…

The Pattern Organization 65

is similar to a pattern. Each command may be responded to somewhat differently by
different troops depending on the context (nationality; position of other troops and
buildings and so on) but it will always be responded to sensibly and in a recognisably
similar way. The collection of all commands which are responded to by a particular
interface is similar to a pattern language. If the cavalry and infantry of a national
army both respond to the commands relevant to them in the same way (they both
‘Quick march’ in the same way, for example), one could instead regard a national
army as having a pattern language, with the minor variations between units (for
example, the speed at which they ‘quick march’) being regarded as variations due to
their context.
 Note, however, that an object on its own is not a pattern: we need to specify (as
a minimum) its context – which almost certainly will include other objects, the forces
which are resolved when we use it (i.e. our success criteria), and the outcome of using
it. This would (or should…) have been documented in the manual for troop training
which should be the drill-instructor’s bible. Historically, the infantry soldier would be
given none of this extraneous information, and his response to words of command
would have been to obey without question; he would have behaved like an object (!)
whereas the drill movement itself was akin to a pattern. Drill movements are linked
together into larger movements: the spectacle of Trooping the Colour which is
beloved of visitors to London and held on HM The Queen’s official birthday in June
is a complex drill pattern composed of numerous individual smaller drill patterns
which have been adjusted to fit within the geographic confines (context) of Horse
Guards Parade in Whitehall, Central London.

 Q: I’ve just completed an object-orientated design course and the box-and-line
diagrams you used to illustrate the class and object structure of the buffer patterns are
wrong! The subclass-to-class lines shown as are OK, but the class-to-
class lines which instantiate an object are misleading. You show them as solid lines
like but shouldn’t they be shown as dashed lines like ?

And what about that strange shaded diamond one used in the Bridge pattern?

A: Ah…an unsuccessful attempt to simplify OMT diagrams. Lines with solid black
arrows at one end have been used as a general indication that one class instructs
another class to ‘do something’ – usually ‘create an object’. (In OMT, one object
calling another is indicated by a dashed line.) A solid line with an arrow at one end
indicates that the calling class keeps (maintains within itself) a reference to another
class. The shaded diamond at the far end of an arrow in the Bridge pattern indicates
that the object at the ‘diamond’ end is an aggregation4 of objects at the other end (for
example, a car is an aggregation of one or more wheels). In the Bridge pattern,
aggregation means that the ‘abstract definition’ does not merely know about the

4 beware: the Gang of Four use the terms ‘composition’ and ‘aggregation’ in exactly the opposite way
around to that defined in the more recent Unified Modelling Language (UML)

Questions and Answers 66

existence of the ‘abstract implementation’ but contains it and is responsible for it, in
the way our electric locomotive is composed of (among other things) a large electric
motor. Neither locomotive nor motor has an independent existence. This is an
example of object composition: a way to avoid having very deep class hierarchies by
splitting the hierarchies into separate groups of classes and then letting one class
reference the other.

Q: My object-orientated design course made great play of clustering design elements
which were basically alike into common families. You took the HOT approach. Why
can’t commonality analysis be used to group processes together

A: HOT decides how much resource (firebreak; buffer) to apply and where to apply it
using the probability of external events (sparks; organizational or business process
change) happening. IT system designers have a similar problem: how to structure
systems such that the impact of subsequent change is minimal or at least contained.
This usually implies that the side-effects of a change are minimal and well-
understood. Jim Coplien in his PhD thesis (reference 3) described one way to achieve
this:

 decompose systems into families of items which have commonality (i.e.
which naturally cluster together because they have common elements, but
are not identical), then…

 within each family, identify what makes each item different (i.e. identify
variability)

Each family then forms a class hierarchy with variation becoming more pronounced
as we move down the hierarchy towards the final (concrete) class.
Commonality/variability analysis can, in principle, be applied to any system but is
most suited to software design.
.

The Pattern Organization 67

The Pattern Organization 69

BIBLIOGRAPHY

Books

1. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. “Design Patterns - Elements of

Reusable Object-Oriented Software” (Addison-Wesley 1994)

2. Shalloway A. and Trott, J.R “Patterns Explained” (Addison-Wesley 2002)

3. Coplien, J.O. “Multi-paradigm design” (PhD thesis for Free University of

Brussels - 2000)

4. Alexander C. “Notes on the synthesis of form” (Harvard University Press 1964)

5. Alexander C. “Centre for Environmental Structure Series” (Oxford University

Press)
 5a. “The timeless way of building” (1979)
 5b. “A pattern language”5 (1977)
 5c. “The Oregon experiment” (1988)

6. Alexander C. “Nature of order” four-volume series (Centre for Environmental

Structure 2003)
 6a. “The phenomenon of life”
 6b. “The process of creating life”
 6c. “A vision of the living world” (yet to be published – as at October 2004)
 6d. “The luminous ground”

7. Alexander C. “A city is not a tree” (in two parts: part 1 in Architectural Forum

Vol 122 No 1 April 1965 and part 2 in Vol 122 No 2 May 1965)

8. Alexander C. “New concepts in complexity theory” (www.katarxis3.com - May

2003)

9a. Stewart M. “The coevolving organization” (Decomplexity Associates 2001)

9b. Stewart M. “The robust organization” (Decomplexity Associates 2003)

9c. Stewart M. “The emergent organization” (Decomplexity Associates – to be

published)

5 with Sara Ishikawa and Murray Silverstein

http://www.katarxis3.com/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Ishikawa%2C Sara/104-5448315-2497515
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Silverstein%2C Murray/104-5448315-2497515

Bibliography 70

INDEX
A

A Pattern Language, 13
Alexander, Chris, ii, 1, 59

B
Balanced Scorecard, ii
barriers

positioning to maximize yield, 49
buffering, 13, 29

C
C-coupling, 54, 55

co-ordination of, 55
strengths of, 1

classes, 22
coevolution, 54
commonality/variability analysis, 66
communication, 54

data (routing of), 53
computers

human (for calculating tables), 52
configuration (of a patttern), 4
context (of a pattern), 3, 7
contexts

hierarchical, 8
Coplien, Jim, 66
criteria

interdependence, 9
cross-connections, 52

D
design, i, 49, 54, 59

object-orientated, 16
of IT systems and networks, 51

design patterns, 2

E
economy, 55
edge of chaos, i, 62
ensemble (of a pattern), 7
EOC, i

F
firebreak, 2, 48

in forest, 47
forces (of a pattern), 4
form (of a pattern), 7

G
Gang of Four, iii, 60

H
hierarchy, 54
high-K, 54
Highly Optimized Tolerance, i, 45, 47, 62
HOT. See Highly Optimized Tolerance

I
interface

to an object, 21
Internet, 54

L
landscape

(deformation of), 55
rugged, 10

languages
simulation, 18

M
misfit

in a design problem, 11
multifaceted

characteristic of systems, 52

N
NKCS (landscape modelling), 1
Notes on the Synthesis of Form, 7

O
Object Modelling Technique (OMT), 34
objects

coevolving, 59
OS/360 (operating system), 51

P
pattern

Adaptor, 31
Adaptor (main definition), 33
Bridge, 31
Bridge (main definition), 42
Chain of Responsibility, 31

Chain of Responsibility (main definition), 39
class and object types, 60
definition by Alexander, 5
Facade, 31
Façade (main definition), 35
Mediator, 31
Mediator (main definition), 37
veneer (prototype pattern), 29

pattern language
definition, 15

Pattern Language concept, 1
pattern pool

definition, 15
picnic site, 48
power law, 54
process

business, 59
protocols

communications, 54

R
resilience (of a network), 54
robustness

definition, 49
router

boundary, 53

S
self-organized criticality, i
semi-lattice (vs trees), 63
signatures (of an object's interface), 64

T
The Coevolving Organization, iv, i, 9, 16, 17, 23, 25, 26,

30, 53, 55, 56
The Emergent Organization, ii
The Robust Organization, 45, 47
theorem (binary system decomposition), 59

U
UML, 31, 61

Y
yield, 49

of a commercial forest, 47

The Pattern Organization

 ISBN 0-9540062-8-3

